1,544 research outputs found
RNA catalysis in model protocell vesicles.
We are engaged in a long-term effort to synthesize chemical systems capable of Darwinian evolution, based on the encapsulation of self-replicating nucleic acids in self-replicating membrane vesicles. Here, we address the issue of the compatibility of these two replicating systems. Fatty acids form vesicles that are able to grow and divide, but vesicles composed solely of fatty acids are incompatible with the folding and activity of most ribozymes, because low concentrations of divalent cations (e.g., Mg(2+)) cause fatty acids to precipitate. Furthermore, vesicles that grow and divide must be permeable to the cations and substrates required for internal metabolism. We used a mixture of myristoleic acid and its glycerol monoester to construct vesicles that were Mg(2+)-tolerant and found that Mg(2+) cations can permeate the membrane and equilibrate within a few minutes. In vesicles encapsulating a hammerhead ribozyme, the addition of external Mg(2+) led to the activation and self-cleavage of the ribozyme molecules. Vesicles composed of these amphiphiles grew spontaneously through osmotically driven competition between vesicles, and further modification of the membrane composition allowed growth following mixed micelle addition. Our results show that membranes made from simple amphiphiles can form vesicles that are stable enough to retain encapsulated RNAs in the presence of divalent cations, yet dynamic enough to grow spontaneously and allow the passage of Mg(2+) and mononucleotides without specific macromolecular transporters. This combination of stability and dynamics is critical for building model protocells in the laboratory and may have been important for early cellular evolution
Potential Effects of Industrial Air Pollution and Wood-Product Supply and Demand, and Structure of the Wood-Products Industry, in Poland
This study aimed to determine potential changes in the production structure of the wood-processing industry up to 2020, resulting from unfavorable impact of industrial pollutants upon forests in Poland. The paper consists of four chapters. In the first section, forecasts of consumer demand for forest products, based on patterns of actual demand, are presented. The structure of industrial demand for wood assortments, and the degree to which it is met, are the topics of the second chapter. In the third chapter, we present forecasts of the possibilities of wood-raw-material consumption by industry with regard to the unfavorable impact of industrial pollution. The last chapter contains forecasts of production regarding foreseen changes in the structure of the wood-processing industry, taking into account qualitative changes in wood raw-material and expected changes in techniques and technology. Our results show that, up to 2020, negative effects of industrial pollutants on forests will have a significant influence on the degree of meeting consumer demands for wood products
The Emergence of Competition Between Model Protocells
The transition from independent molecular entities to cellular structures with
integrated behaviors was a crucial aspect of the origin of life. We show that simple
physical principles can mediate a coordinated interaction between genome and
compartment boundary, independent of any genomic functions beyond self-replication.
RNA, encapsulated in fatty acid vesicles, exerts an osmotic pressure on
the vesicle membrane that drives the uptake of additional membrane components,
leading to membrane growth at the expense of relaxed vesicles, which shrink. Thus,
more efficient RNA replication could cause faster cell growth, leading to the
emergence of Darwinian evolution at the cellular level
Study of W± boson in the ALICE muon spectrometer: considerations and analysis using the HLT tool
W± bosons produced in proton-proton collisions can be observed in the ALICE muon spectrometer via their decay into single muons at a transverse momentum, pt ~ Mw/2 40 GeV/c. However the identification of these single muons is complicated by a large amount of muonic background, especially in the low pt region. Therefore, it is necessary to apply precise pt cuts below the region of interest. This can be done by means of the High Level Trigger (HLT). In this paper we present the performance of detecting high pt muons at the HLT level. In order to improve the momentum resolution of the L0 trigger, fast clusterization of the tracking chambers together with L0 trigger matching and fast tracking reconstruction is applied. This will reduce the background in the high pt muon analysis
Selection for Replicases in Protocells
PMCID: PMC3649988This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Electrostatically gated membrane permeability in inorganic protocells
Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization
Real Time Global Tests of the ALICE High Level Trigger Data Transport Framework
The High Level Trigger (HLT) system of the ALICE experiment is an online
event filter and trigger system designed for input bandwidths of up to 25 GB/s
at event rates of up to 1 kHz. The system is designed as a scalable PC cluster,
implementing several hundred nodes. The transport of data in the system is
handled by an object-oriented data flow framework operating on the basis of the
publisher-subscriber principle, being designed fully pipelined with lowest
processing overhead and communication latency in the cluster. In this paper, we
report the latest measurements where this framework has been operated on five
different sites over a global north-south link extending more than 10,000 km,
processing a ``real-time'' data flow.Comment: 8 pages 4 figure
System Size, Energy and Centrality Dependence of Pseudorapidity Distributions of Charged Particles in Relativistic Heavy Ion Collisions
We present the first measurements of the pseudorapidity distribution of
primary charged particles in Cu+Cu collisions as a function of collision
centrality and energy, \sqrtsnn = 22.4, 62.4 and 200 GeV, over a wide range of
pseudorapidity, using the PHOBOS detector. Making a global comparison of Cu+Cu
and Au+Au results, we find that the total number of produced charged particles
and the rough shape (height and width) of the pseudorapidity distributions are
determined by the number of nucleon participants. More detailed studies reveal
that a more precise matching of the shape of the Cu+Cu and Au+Au pseudorapidity
distributions over the full range of pseudorapidity occurs for the same
Npart/2A value rather than the same Npart value. In other words, it is the
collision geometry rather than just the number of nucleon participants that
drives the detailed shape of the pseudorapidity distribution and its centrality
dependence at RHIC energies.Comment: Submitted to Physical Review Letter
Latest Results from PHOBOS
This manuscript contains a summary of the latest physics results from PHOBOS,
as reported at Quark Matter 2006. Highlights include the first measurement from
PHOBOS of dynamical elliptic flow fluctuations as well as an explanation of
their possible origin, two-particle correlations, identified particle ratios,
identified particle spectra and the latest results in global charged particle
production.Comment: 9 pages, 7 figures, PHOBOS plenary proceedings for Quark Matter 200
System size, energy, centrality and pseudorapidity dependence of charged-particle density in Au+Au and Cu+Cu collisions at RHIC
Charged particle pseudorapidity distributions are presented from the PHOBOS
experiment at RHIC, measured in Au+Au and Cu+Cu collisions at sqrt{s_NN}=19.6,
22.4, 62.4, 130 and 200 GeV, as a function of collision centrality. The
presentation includes the recently analyzed Cu+Cu data at 22.4 GeV. The
measurements were made by the same detector setup over a broad range in
pseudorapidity, |eta|<5.4, allowing for a reliable systematic study of particle
production as a function of energy, centrality and system size. Comparing Cu+Cu
and Au+Au results, we find that the total number of produced charged particles
and the overall shape (height and width) of the pseudorapidity distributions
are determined by the number of nucleon participants, N_part. Detailed
comparisons reveal that the matching of the shape of the Cu+Cu and Au+Au
pseudorapidity distributions over the full range of eta is better for the same
N_part/2A value than for the same N_part value, where A denotes the mass
number. In other words, it is the geometry of the nuclear overlap zone, rather
than just the number of nucleon participants that drives the detailed shape of
the pseudorapidity distribution and its centrality dependence.Comment: 5 pages, 4 figures. Presented at the 20th International Conference on
Nucleus-Nucleus Collisions (Quark Matter 2008), Jaipur, Rajasthan, India,
4-10 February 200
- …
