12 research outputs found
Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation
The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5–7.5×10 cms. This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000–4000 fb-1 of proton-proton collisions at a center-of-mass energy of 13–14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment
Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation
The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5-7.5×1034 cm-2s-1. This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000-4000 fb-1 of proton-proton collisions at a center-of-mass energy of 13-14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment
Evaluation of planar silicon pixel sensors with the RD53A readout chip for the Phase-2 Upgrade of the CMS Inner Tracker
The Large Hadron Collider (LHC) at CERN will undergo an upgrade in order to increase its luminosity to cms. The increased luminosity during this High-Luminosity running phase\\
(HL-LHC), starting around 2029, means a higher rate of proton-proton interactions, hence a larger ionizing dose and particle fluence for the detectors.
The current tracking system of the CMS experiment will be fully replaced in order to cope with the new operating conditions. Prototype planar pixel sensors for the CMS Inner Tracker with square m m and rectangular m m pixels read out by the RD53A chip were characterized in the lab and at the DESY-II testbeam facility in order to identify designs that meet the requirements of CMS at the HL-LHC. A spatial resolution of approximately 3.4m (2m) is obtained using the modules with m m (m m) pixels at the optimal angle of incidence before irradiation. After irradiation to a 1 MeV neutron equivalent fluence of cm, a resolution of 9.4m is achieved at a bias voltage of 800 V using a module with m m pixel size. All modules retain a hit efficiency in excess of 99\% after irradiation to fluences up to cm.
Further studies of the electrical properties of the modules, especially crosstalk, are also presented in this paper.The Large Hadron Collider at CERN will undergo an upgrade inorder to increase its luminosity to7.5 × 10 cms. The increased luminosityduring this High-Luminosity running phase, starting around 2029,means a higher rate of proton-proton interactions, hence a largerionizing dose and particle fluence for the detectors. The currenttracking system of the CMS experiment will be fully replaced inorder to cope with the new operating conditions. Prototype planarpixel sensors for the CMS Inner Tracker with square50 μm × 50 μm and rectangular100 μm × 25 μm pixels read out by theRD53A chip were characterized in the lab and at the DESY-II testbeamfacility in order to identify designs that meet the requirements ofCMS during the High-Luminosity running phase. A spatial resolutionof approximately 3.4 μm (2 μm) is obtained using themodules with 50 μm × 50 μm(100 μm × 25 μm) pixels at the optimalangle of incidence before irradiation. After irradiation to a 1 MeVneutron equivalent fluence ofΦ = 5.3 × 10 cm, a resolution of9.4 μm is achieved at a bias voltage of 800 V using a modulewith 50 μm × 50 μm pixel size. All modulesretain a hit efficiency in excess of 99% after irradiation tofluences up to 2.1 × 10 cm. Further studies ofthe electrical properties of the modules, especially crosstalk, arealso presented in this paper.The Large Hadron Collider (LHC) at CERN will undergo an upgrade in order to increase its luminosity to cms. The increased luminosity during this High-Luminosity running phase (HL-LHC), starting around 2029, means a higher rate of proton-proton interactions, hence a larger ionizing dose and particle fluence for the detectors. The current tracking system of the CMS experiment will be fully replaced in order to cope with the new operating conditions. Prototype planar pixel sensors for the CMS Inner Tracker with square m m and rectangular m m pixels read out by the RD53A chip were characterized in the lab and at the DESY-II testbeam facility in order to identify designs that meet the requirements of CMS at the HL-LHC. A spatial resolution of approximately 3.4m (2m) is obtained using the modules with m m (m m) pixels at the optimal angle of incidence before irradiation. After irradiation to a 1 MeV neutron equivalent fluence of cm, a resolution of 9.4m is achieved at a bias voltage of 800 V using a module with m m pixel size. All modules retain a hit efficiency in excess of 99% after irradiation to fluences up to cm. Further studies of the electrical properties of the modules, especially crosstalk, are also presented in this paper
Evaluation of planar silicon pixel sensors with the RD53A readout chip for the Phase-2 Upgrade of the CMS Inner Tracker
Abstract: The Large Hadron Collider at CERN will undergo an upgrade in order to increase its luminosity to 7.5 x 1034 cm-2s-1. The increased luminosity during this High-Luminosity running phase, starting around 2029, means a higher rate of proton-proton interactions, hence a larger ionizing dose and particle fluence for the detectors. The current tracking system of the CMS experiment will be fully replaced in order to cope with the new operating conditions. Prototype planar pixel sensors for the CMS Inner Tracker with square 50 gm x 50 gm and rectangular 100 gm x 25 gm pixels read out by the RD53A chip were characterized in the lab and at the DESY-II testbeam facility in order to identify designs that meet the requirements of CMS during the High-Luminosity running phase. A spatial resolution of approximately 3.4 gm (2 gm) is obtained using the modules with 50 gm x 50 gm (100 gm x 25 gm) pixels at the optimal angle of incidence before irradiation. After irradiation to a 1 MeV neutron equivalent fluence of (Deq = 5.3 x 1015 cm-2, a resolution of 9.4 gm is achieved at a bias voltage of 800 V using a module with 50 gm x 50 gm pixel size. All modules retain a hit efficiency in excess of 99% after irradiation to fluences up to 2.1 x 1016 cm-2. Further studies of the electrical properties of the modules, especially crosstalk, are also presented in this paper
Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation
The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5-7.5 cms. This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000-4000 fb of proton-proton collisions at a center-of-mass energy of 13-14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment
Evaluation of HPK n plus -p planar pixel sensors for the CMS Phase-2 upgrade
Abstract: To cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), scheduled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determined by the long operation time of 10 years with an instantaneous peak luminosity of up to 7.5 x 1034 cm-2 s-1 in the ultimate performance scenario. Depending on the radial distance from the interaction point, the silicon sensors will receive a particle fluence corresponding to a non-ionising energy loss of up to ?eq = 3.5 x 1016 cm-2. This paper focuses on planar pixel sensor design and qualification up to a fluence of ?eq = 1.4 x 1016 cm-2. For the development of appropriate planar pixel sensors an R&D program was initiated, which includes n+-p sensors on 150 mm (6") wafers with an active thickness of 150 mu m with pixel sizes of 100 x 25 mu m2 and 50 x 50 mu m2 manufactured by Hamamatsu Photonics K.K. (HPK). Single chip modules with ROC4Sens and RD53A readout chips were made. Irradiation with protons and neutrons, as well was an extensive test beam campaign at DESY were carried out. This paper presents the investigation of various assemblies mainly with ROC4Sens readout chips. It demonstrates that multiple designs fulfil the requirements in terms of breakdown voltage, leakage current and efficiency. The single point resolution for 50 x 50 mu m2 pixels is measured as 4.0 mu m for non-irradiated samples, and 6.3 mu m after irradiation to ?eq = 7.2 x 1015 cm-2
Evaluation of HPK n plus -p planar pixel sensors for the CMS Phase-2 upgrade
To cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), scheduled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determined by the long operation time of 10 years with an instantaneous peak luminosity of up to 7.5 x 1034 cm-2 s-1 in the ultimate performance scenario. Depending on the radial distance from the interaction point, the silicon sensors will receive a particle fluence corresponding to a non-ionising energy loss of up to ?eq = 3.5 x 1016 cm-2. This paper focuses on planar pixel sensor design and qualification up to a fluence of ?eq = 1.4 x 1016 cm-2. For the development of appropriate planar pixel sensors an R&D program was initiated, which includes n+-p sensors on 150 mm (6") wafers with an active thickness of 150 mu m with pixel sizes of 100 x 25 mu m2 and 50 x 50 mu m2 manufactured by Hamamatsu Photonics K.K. (HPK). Single chip modules with ROC4Sens and RD53A readout chips were made. Irradiation with protons and neutrons, as well was an extensive test beam campaign at DESY were carried out. This paper presents the investigation of various assemblies mainly with ROC4Sens readout chips. It demonstrates that multiple designs fulfil the requirements in terms of breakdown voltage, leakage current and efficiency. The single point resolution for 50 x 50 mu m2 pixels is measured as 4.0 mu m for non-irradiated samples, and 6.3 mu m after irradiation to ?eq = 7.2 x 1015 cm-2
Measurement of the fractional radiation length of a pixel module for the CMS Phase-2 upgrade via the multiple scattering of positrons
International audienceHigh-luminosity particle collider experiments such as the ones planned at the High-Luminosity Large Hadron Collider require ever-greater vertexing precision of the tracking detectors, necessitating also reductions in the material budget of the detectors. Traditionally, the fractional radiation length () of detectors is either estimated using known properties of the constituent materials, or measured in dedicated runs of the final detector. In this paper, we present a method of direct measurement of the material budget of a CMS prototype module designed for the Phase-2 upgrade of the CMS detector using a 40-65 MeV positron beam. A total of 630 million events were collected at the Paul Scherrer Institut PiE1 experimental area using a three-plane telescope consisting of the prototype module as the central plane, surrounded by two MALTA monolithic pixel detectors. Fractional radiation lengths were extracted from scattering angle distributions using the Highland approximation for multiple scattering. A statistical technique recovered runs suffering from trigger desynchronisation, and several corrections were introduced to compensate for local inefficiencies related to geometric and beam shape constraints. An overall average of (0.84 0.10)% across the surveyed regions was measured, which is compatible with an empirical estimate of 0.825% computed from known material properties. Higher-granularity maps of the fractional radiation length were produced for both rectangular regions and regions of uniform material composition. The results bode well for the CMS Phase-2 upgrade modules, which will play a key role in the minimisation of the material budget of the upgraded detector
Evaluation of HPK - planar pixel sensors for the CMS Phase-2 upgrade
International audienceTo cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), sched-uled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determinedby the long operation time of 10 years with an instantaneous peak luminosity of up to 7.5 × 1034 cm−2 s−1 in the ultimate perfor-mance scenario. Depending on the radial distance from the interaction point, the silicon sensors will receive a particle fluencecorresponding to a non-ionizing energy loss of up to Φeq = 3.5 × 1016 cm−2. This paper focuses on planar pixel sensor design andqualification up to a fluence of Φeq = 1.4 × 1016 cm−2.For the development of appropriate planar pixel sensors an R&D program was initiated, which includes n+-p sensors on 150 mm(6”) wafers with an active thickness of 150 μm with pixel sizes of 100 × 25 μm2 and 50 × 50 μm2 manufactured by Hamamatsu.Single chip modules with ROC4Sens and RD53A readout chips were made. Irradiation with protons and neutrons, as well was anextensive test beam campaign at DESY were carried out. This paper presents the investigation of various assemblies mainly withROC4Sens readout chips. It demonstrates that multiple designs fulfill the requirements in terms of breakdown voltage, leakagecurrent and efficiency. The single point resolution for 50 × 50 μm2 pixels is measured as 4.0 μm for non-irradiated samples, and6.3 μm after irradiation to Φeq = 7.2 × 1015 cm−2