6 research outputs found

    Molecular Antioxidants Maintain Synergistic Radical Scavenging Activity upon Co-Immobilization on Clay Nanoplatelets

    Get PDF
    Unbalanced levels of reactive oxygen species (ROS) result in oxidative stress, affecting both biomedical and industrial processes. Antioxidants can prevent ROS overproduction and thus delay or inhibit their harmful effects. Herein, activities of two molecular antioxidants (gallic acid (GA), a well-known phenolic compound, and nicotinamide adenine dinucleotide (NADH), a vital biological cofactor) were tested individually and in combination to assess possible synergistic, additive, or antagonistic effects in free radical scavenging and in redox capacity assays. GA was a remarkable radical scavenger, and NADH exhibited moderate antioxidant activity, while their combination at different molar ratios led to a synergistic effect since the resulting activity was superior to the sum of the individual GA and NADH activities. Their coimmobilization was performed on the surface of delaminated layered double hydroxide clay nanoplatelets by electrostatic interactions, and the synergistic effect was maintained upon such a heterogenization of these molecular antioxidants. The coimmobilization of GA and NADH expands the range of their potential applications, in which separation of antioxidant additives is important during treatments or manufacturing processes

    Engineering inorganic nanozyme architectures for decomposition of reactive oxygen species

    No full text
    <jats:p>Nanozyme-based composites with efficient reactive oxygen species-scavenging activity can be designed by heteroaggregation as well as surface or structural modification of nanomaterials.</jats:p&gt

    Molecular Antioxidants Maintain Synergistic Radical Scavenging Activity upon Co-Immobilization on Clay Nanoplatelets

    No full text
    Unbalanced levels of reactive oxygen species (ROS) result in oxidative stress, affecting both biomedical and industrial processes. Antioxidants can prevent ROS overproduction and thus delay or inhibit their harmful effects. Herein, activities of two molecular antioxidants (gallic acid (GA), a well-known phenolic compound, and nicotinamide adenine dinucleotide (NADH), a vital biological cofactor) were tested individually and in combination to assess possible synergistic, additive, or antagonistic effects in free radical scavenging and in redox capacity assays. GA was a remarkable radical scavenger, and NADH exhibited moderate antioxidant activity, while their combination at different molar ratios led to a synergistic effect since the resulting activity was superior to the sum of the individual GA and NADH activities. Their coimmobilization was performed on the surface of delaminated layered double hydroxide clay nanoplatelets by electrostatic interactions, and the synergistic effect was maintained upon such a heterogenization of these molecular antioxidants. The coimmobilization of GA and NADH expands the range of their potential applications, in which separation of antioxidant additives is important during treatments or manufacturing processes

    Confinement of Triple-Enzyme-Involved Antioxidant Cascade in Two-Dimensional Nanostructure

    No full text
    Application of antioxidant enzymes in medical or industrial processes is limited due to their high sensitivity to environmental conditions. Incorporation of such enzymes in nanostructures provides a promising route to obtain highly efficient and robust biocatalytic system to scavenge reactive oxygen species (ROS). Here, this question was addressed by confinement of superoxide dismutase (SOD), horseradish peroxidase (HRP), and catalase (CAT) enzymes into nanostructures containing polyelectrolyte building blocks (alginate (Alg) and trimethyl chitosan (TMC)) and delaminated layered double hydroxide (dLDH) nanoparticle support. The nanocomposite possessed excellent structural and colloidal stability, while antioxidant tests revealed that the enzymes remained active upon immobilization and the developed composite greatly reduced intracellular oxidative stress in two-dimensional cell cultures. Moreover, it effectively prevented hydrogen peroxide-induced double stranded DNA breaks, which is a common consequence of oxidative stress. The results provide important tools to design complex nanostructures with multienzymatic antioxidant activities for ROS scavenging

    Aggregation of Halloysite Nanotubes in the Presence of Multivalent Ions and Ionic Liquids

    No full text
    Colloidal stability was investigated in two types of particle systems, namely, with bare (h-HNT) and polyimidazolium-functionalized (h-HNT-IP-2) alkali-treated halloysite nanotubes in solutions of metal salts and ionic liquids (ILs). The valence of the metal ions and the number of carbon atoms in the hydrocarbon chain of the IL cations (1-methylimidazolium (MIM+), 1-ethyl-3-methylimidazolium (EMIM+), 1-butyl-3-methylimidazolium (BMIM+), and 1-hexy1-3-methylimidazolium (HMIM+)) were altered in the measurements. For the bare h-HNT with a negative surface charge, multivalent counterions destabilized the dispersions at low values of critical coagulation concentration (CCC) in line with the Schulze-Hardy rule. In the presence of ILs, significant adsorption of HMIM+ took place on the h-HNT surface, leading to charge neutralization and overcharging at appropriate concentrations. A weaker affinity was observed for MIM+, EMIM+, and BMIM+, while they adsorbed on the particles to different extents. The order HMIM+ < BMIM+ < EMIM+ < MIM+ was obtained for the CCCs of h-HNT, indicating that HMIM+ was the most effective in the destabilization of the colloids. For h-HNT-IP-2 with a positive surface charge, no specific interaction was observed between the salt and the IL constituent cations and the particles, i.e., the determined charge and aggregation parameters were the same within experimental error, irrespective of the type of co-ions. These results clearly indicate the relevance of ion adsorption in the colloidal stability of the nanotubes and thus provide useful information for further design of processable h-HNT dispersions.LCO
    corecore