997 research outputs found

    Macroscopic Features of Light Heavy-Ion Fission Reactions

    Get PDF
    Global macroscopic features observed in the fully-damped binary processes in light di-nuclear systems, such as limiting angular momenta, mean total kinetic energies and energy thresholds for fusion-fission processes (''fission thresholds") are presented. Their deduced systematics are consistent with that obtained for heavier systems and follow a fusion-fission picture which can be described by a realistic rotating liquid drop model considering diffuse-surface and finite-nuclear-range effects.Comment: 8 pages(REVTeX), 3 figures available upon request, to appear in Phys. Rev.

    Binary Decay of Light Nuclear Systems

    Full text link
    A review of the characteristic features found in fully energy-damped, binarydecay yields from light heavy-ion reactions with 20Atarget+Aprojectile8020\leq A_{target} + A_{projectile}\leq 80 is presented. The different aspects of these yields that have been used to support models of compound-nucleus (CN) fission and deep-inelastic dinucleus orbiting are highlighted. Cross section calculations based on the statistical phase space at different stages of the reaction are presented and compared to the experimental results. Although the statistical models are found to reproduce most of the observed experimental behaviors, an additional reaction component corresponding to a heavy-ion resonance or orbiting mechanism is also evident in certain systems. The system dependence of this second component is discussed. The extent to which the binary yields in very light systems (ACN32)(A_{CN} \leq 32) can be viewed as resulting from a fusion-fission mechanism is explored. A number of unresolved questions, such as whether the different observed behaviors reflect characteristically different reaction times, are discussed.Comment: 79 pages REVTeX file, 39 ps Figures included - to be publihed in Physics Report

    Entrance-channel Mass-asymmetry Dependence of Compound-nucleus Formation Time in Light Heavy-ion Reactions

    Get PDF
    The entrance-channel mass-asymmetry dependence of the compound nucleus formation time in light heavy-ion reactions has been investigated within the framework of semiclassical dissipative collision models. the model calculations have been succesfully applied to the formation of the 38^{38}Ar compound nucleus as populated via the 9^{9}Be+29^{29}Si, 11^{11}B+27^{27}Al, 12^{12}C+26^{26}Mg and 19^{19}F+19^{19}F entrance channels. The shape evolution of several other light composite systems appears to be consistent with the so-called "Fusion Inhibition Factor" which has been experimentally observed. As found previously in more massive systems for the fusion-evaporation process, the entrance-channel mass-asymmetry degree of freedom appears to determine the competition between the different mechanisms as well as the time scales involved.Comment: 12 pages, 3 Figures available upon request, Submitted at Phys. Rev.

    Study of 9Be+12C elastic scattering at energies near the Coulomb barrier

    Full text link
    In this work, angular distribution measurements for the elastic channel were performed for the 9Be+12C reaction at the energies ELab=13.0, 14.5, 17.3, 19.0 and 21.0 MeV, near the Coulomb barrier. The data have been analyzed in the framework of the double folding S\~ao Paulo potential. The experimental elastic scattering angular distributions were well described by the optical potential at forward angles for all measured energies. However, for the three highest energies, an enhancement was observed for intermediate and backward angles. This can be explained by the elastic transfer mechanism. Keywords: 9Be+12C, Elastic Scattering, S\~aoo Paulo Potential

    6Li direct breakup lifetimes

    Full text link
    alpha-d coincidence data were studied for the 6Li + 59Co reaction at E(lab) = 29.6 MeV. By using a kinematic analysis, it was possible to identify which process, leading to the same final state, has the major contribution for each of the selected angular regions. Contributions of the 6Li sequential and direct breakup to the incomplete fusion/transfer process were discussed by considering the lifetimes obtained by using a semiclassical approach, for both breakup components.Comment: 5 pages, 4 figures, Invited Talk (Parrallel Sessions) of A. Szanto de Toledo, prepared for the Proccedings of the 10th International Conference on Nucleus-Nucleus Collisions, August 16-21, 2009, Beijing, China; submitted to Nucl. Phys. A (Proceedings of NN2009

    Dissipative collisions in 16^{16}O + 27^{27}Al at Elab_{lab}=116 MeV

    Full text link
    The inclusive energy distributions of fragments (3\leqZ\leq7) emitted in the reaction 16^{16}O + 27^{27}Al at Elab=E_{lab} = 116 MeV have been measured in the angular range θlab\theta_{lab} = 15^\circ - 115^\circ. A non-linear optimisation procedure using multiple Gaussian distribution functions has been proposed to extract the fusion-fission and deep inelastic components of the fragment emission from the experimental data. The angular distributions of the fragments, thus obtained, from the deep inelastic component are found to fall off faster than those from the fusion-fission component, indicating shorter life times of the emitting di-nuclear systems. The life times of the intermediate di-nuclear configurations have been estimated using a diffractive Regge-pole model. The life times thus extracted (15×1022\sim 1 - 5\times 10^{-22} Sec.) are found to decrease with the increase in the fragment charge. Optimum Q-values are also found to increase with increasing charge transfer i.e. with the decrease in fragment charge.Comment: 9 pages, 4 figures, 1 tabl

    Towards Quantum Transport for Nuclear Reactions

    Full text link
    Nonequilibrium Green's functions represent a promising tool for describing central nuclear reactions. Even at the single-particle level, though, the Green's functions contain more information that computers may handle in the foreseeable future. In this study, we investigate whether all the information contained in the Green's functions is necessarily relevant when describing the time evolution of nuclear reactions. For this, we carry out mean-field calculations of slab collisions in one dimension.Comment: 8 pages, 11 figures, contribution to Proceedings of the Conference on Frontiers of Quantum and Mesoscopic Thermodynamics, 28 July - 2 August 2008, Prague, Czech Republi

    Near-barrier Fusion and Breakup/Transfer induced by Weakly Bound and Exotic Halo Nuclei

    Full text link
    The influence on the fusion process of coupling to collective degrees of freedom has been explored. The significant enhancement of the fusion cross section at sub-barrier energies was compared to predictions of one-dimensional barrier penetration models. This was understood in terms of the dynamical processes arising from strong couplings to collective inelastic excitations of the target and projectile. However, in the case of reactions where at least one of the colliding nuclei has a sufficiently low binding energy, for breakup to become an important process, conflicting model predictions and experimental results have been reported in the literature. Excitation functions for sub- and near-barrier total (complete + incomplete) fusion cross sections have been measured for the 6,7^{6,7}Li+59^{59}Co reactions. Elastic scattering as well as breakup/transfer yields have also been measured at several incident energies. Results of Continuum-Discretized Coupled-Channel ({\sc Cdcc}) calculations describe reasonably well the experimental data for both reactions at and above the barrier. A systematic study of 4,6^{4,6}He induced fusion reactions with a three-body {\sc Cdcc} method is presented. The relative importance of breakup and bound-state structure effects on total fusion (excitation functions) is particularly investigated. The four-body {\sc Cdcc} model is being currently developed.Comment: 8 pages, 3 figures; espcrc1 style; Invited Talk given at IX Int.Conf. on Nucleus-Nucleus Collisions, Rio de Janeiro Aug.2006; submitted to Nucl.Phys.
    corecore