38 research outputs found

    Potential energy surfaces of charge transfer states

    Get PDF
    In this paper the potential energy curves of charge transfer (CT) electronic states and their interaction with local ones have been investigated. Besides the global view of these curves, special attention has been paid to the region of the crossing and the infinite separation limit. It was found that triple excitations are needed to accurately describe potential energy surfaces of CT states. Among the cheaper variants, both STEOM-CCSD and CCSD(T)(a)* methods are promising in this respect. The somewhat larger error of CCSD for CT states can be explained by its size extensivity error and the overestimation of the asymptotic excitation energy. Second order approximations are not advantageous for the error cancellation, in fact CC2 is much worse for CT states than any other method investigated here. The results also show that the location of the (avoided) crossings of local and CT states depend very much on the accurate description of the CT states. Failure to describe this topology might affect dynamics, and a warning, in particular in case of CC2, should be issued if CT states play a role in the physics of the problem

    Comparison of approximate intermolecular potentials for ab initio fragment calculations on medium sized N‐heterocycles

    Get PDF
    The ground state intermolecular potential of bimolecular complexes of N‐heterocycles is analyzed for the impact of individual terms in the interaction energy as provided by various, conceptually different theories. Novel combinations with several formulations of the electrostatic, Pauli repulsion, and dispersion contributions are tested at both short‐ and long‐distance sides of the potential energy surface, for various alignments of the pyrrole dimer as well as the cytosine–uracil complex. The integration of a DFT/CCSD density embedding scheme, with dispersion terms from the effective fragment potential (EFP) method is found to provide good agreement with a reference CCSD(T) potential overall; simultaneously, a quantum mechanics/molecular mechanics approach using CHELPG atomic point charges for the electrostatic interaction, augmented by EFP dispersion and Pauli repulsion, comes also close to the reference result. Both schemes have the advantage of not relying on predefined force fields; rather, the interaction parameters can be determined for the system under study, thus being excellent candidates for ab initio modeling

    Coupled-cluster techniques for computational chemistry: The CFOUR program package

    Get PDF
    An up-to-date overview of the CFOUR program system is given. After providing a brief outline of the evolution of the program since its inception in 1989, a comprehensive presentation is given of its well-known capabilities for high-level coupled-cluster theory and its application to molecular properties. Subsequent to this generally well-known background information, much of the remaining content focuses on lesser-known capabilities of CFOUR, most of which have become available to the public only recently or will become available in the near future. Each of these new features is illustrated by a representative example, with additional discussion targeted to educating users as to classes of applications that are now enabled by these capabilities. Finally, some speculation about future directions is given, and the mode of distribution and support for CFOUR are outlined

    Photometric redshifts from reconstructed QSO templates

    Get PDF
    From SDSS commissioning photometric and spectroscopic data, we investigate the utility of photometric redshift techniques to the task of estimating QSO redshifts. We consider empirical methods (e.g. nearest-neighbor searches and polynomial fitting), standard spectral template fitting and hybrid approaches (i.e. training spectral templates from spectroscopic and photometric observations of QSOs). We find that in all cases, due to the presence of strong emission-lines within the QSO spectra, the nearest-neighbor and template fitting methods are superior to the polynomial fitting approach. Applying a novel reconstruction technique, we can, from the SDSS multicolor photometry, reconstruct a statistical representation of the underlying SEDs of the SDSS QSOs. Although, the reconstructed templates are based on only broadband photometry the common emission lines present within the QSO spectra can be recovered in the resulting spectral energy distributions. The technique should be useful in searching for spectral differences among QSOs at a given redshift, in searching for spectral evolution of QSOs, in comparing photometric redshifts for objects beyond the SDSS spectroscopic sample with those in the well calibrated photometric redshifts for objects brighter than 20th magnitude and in searching for systematic and time variable effects in the SDSS broad band photometric and spectral photometric calibrations.Comment: 21 pages, 9 figures, LaTeX AASTeX, submitted to A

    The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry

    Get PDF
    The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview

    IL28B and IL10R -1087 polymorphisms are protective for chronic genotype 1 HCV infection and predictors of response to interferon-based therapy in an East-Central European cohort.

    Get PDF
    BACKGROUND: Previous studies have shown that single nucleotide polymorphisms (SNP) in IL28B and IL10R are associated with sustained virological response (SVR) in chronic hepatitis C patients treated with pegilated interferon plus ribavirin (P/R). The present study extends our earlier investigations on a large East-Central European cohort. The allele frequencies of IL28B and IL10R in genotype 1 HCV infection were compared with that of healthy controls for the purpose of examining the relationship between the polymorphisms and the SVR to P/R treatment. METHODS: A total of 748 chronic HCV1 infected patients (365 male, 383 female; 18-82 years) and 105 voluntary blood donors as controls were enrolled. Four hundred and twenty HCV patients were treated with P/R for 24-72 weeks, out of them 195 (46.4%) achieved SVR. The IL28 rs12979860 SNP was determined using Custom Taqman SNP Genotyping Assays. The IL10R -1087 (also known as IL10R -1082 (rs1800896) promoter region SNP was determined by RT-PCR and restriction fragment length polymorphism analysis. RESULTS: The IL28B CC genotype occurred with lower frequency in HCV patients than in controls (26.1% vs 51.4%, p<0.001). P/R treated patients with the IL28B CC genotype achieved higher SVR rate, as compared to patients with CT (58.6% vs 40.8%, p=0.002). The prevalence of IL10R -1087 GG genotype was lower in patients than in controls (31.8 % vs 52.2%, p<0.001). Among patients achieving SVR, the IL10R -1087 GG genotype occurred with higher frequency than the AA (32.0% vs 17.4%, p=0.013). The IL28B T allele plus IL10R A allele combination was found with higher prevalence in patients than in controls (52% vs 20.7%, p<0.001). The IL28B CC plus IL10R A allele combination occurred with higher frequency among patients with SVR than in non-responders (21.3% vs 12.8%, p=0.026). Both the IL28B CC plus IL10R GG and the IL28B CC plus IL10R A allele combinations occurred with lower frequency in patients than in controls. CONCLUSIONS: In our HCV1 patients, both the IL28B CC and IL10R GG genotypes are associated with clearance of HCV. Moreover, distinct IL28B and IL10R allele combinations appear to be protective against chronic HCV1 infection and predictors of response to P/R therapy

    Oxidative/Nitrative Stress and Inflammation Drive Progression of Doxorubicin-Induced Renal Fibrosis in Rats as Revealed by Comparing a Normal and a Fibrosis-Resistant Rat Strain

    Get PDF
    Chronic renal fibrosis is the final common pathway of end stage renal disease caused by glomerular or tubular pathologies. Genetic background has a strong influence on the progression of chronic renal fibrosis. We recently found that Rowett black hooded rats were resistant to renal fibrosis. We aimed to investigate the role of sustained inflammation and oxidative/nitrative stress in renal fibrosis progression using this new model. Our previous data suggested the involvement of podocytes, thus we investigated renal fibrosis initiated by doxorubicin-induced (5 mg/kg) podocyte damage. Doxorubicin induced progressive glomerular sclerosis followed by increasing proteinuria and reduced bodyweight gain in fibrosis-sensitive, Charles Dawley rats during an 8-week long observation period. In comparison, the fibrosis-resistant, Rowett black hooded rats had longer survival, milder proteinuria and reduced tubular damage as assessed by neutrophil gelatinase-associated lipocalin (NGAL) excretion, reduced loss of the slit diaphragm protein, nephrin, less glomerulosclerosis, tubulointerstitial fibrosis and matrix deposition assessed by periodic acid-Schiff, Picro-Sirius-red staining and fibronectin immunostaining. Less fibrosis was associated with reduced profibrotic transforming growth factor-beta, (TGF-beta1) connective tissue growth factor (CTGF), and collagen type I alpha 1 (COL-1a1) mRNA levels. Milder inflammation demonstrated by histology was confirmed by less monocyte chemotactic protein 1 (MCP-1) mRNA. As a consequence of less inflammation, less oxidative and nitrative stress was obvious by less neutrophil cytosolic factor 1 (p47phox) and NADPH oxidase-2 (p91phox) mRNA. Reduced oxidative enzyme expression was accompanied by less lipid peroxidation as demonstrated by 4-hydroxynonenal (HNE) and less protein nitrosylation demonstrated by nitrotyrosine (NT) immunohistochemistry and quantified by Western blot. Our results demonstrate that mediators of fibrosis, inflammation and oxidative/nitrative stress were suppressed in doxorubicin nephropathy in fibrosis-resistant Rowett black hooded rats underlying the importance of these pathomechanisms in the progression of renal fibrosis initiated by glomerular podocyte damage
    corecore