116 research outputs found

    Evaluation of biological pathways involved in chemotherapy response in breast cancer

    Get PDF
    INTRODUCTION: Our goal was to examine the association between biological pathways and response to chemotherapy in estrogen receptor-positive (ER+) and ER-negative (ER-) breast tumors separately. METHODS: Gene set enrichment analysis including 852 predefined gene sets was applied to gene expression data from 51 ER- and 82 ER+ breast tumors that were all treated with a preoperative paclitaxel, 5-fluoruracil, doxorubicin, and cyclophosphamide chemotherapy. RESULTS: Twenty-seven (53%) ER- and 7 (9%) ER+ patients had pathologic complete response (pCR) to therapy. Among the ER- tumors, a proliferation gene signature (false discovery rate [FDR] q = 0.1), the genomic grade index (FDR q = 0.044), and the E2F3 pathway signature (FDR q = 0.22, P = 0.07) were enriched in the pCR group. Among the ER+ tumors, the proliferation signature (FDR q = 0.001) and the genomic grade index (FDR q = 0.015) were also significantly enriched in cases with pCR. Ki67 expression, as single gene marker of proliferation, did not provide the same information as the entire proliferation signature. An ER-associated gene set (FDR q = 0.03) and a mutant p53 gene signature (FDR q = 0.0019) were enriched in ER+ tumors with residual cancer. CONCLUSION: Proliferation- and genomic grade-related gene signatures are associated with chemotherapy sensitivity in both ER- and ER+ breast tumors. Genes involved in the E2F3 pathway are associated with chemotherapy sensitivity among ER- tumors. The mutant p53 signature and expression of ER-related genes were associated with lower sensitivity to chemotherapy in ER+ breast tumors only.Journal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Effect of training-sample size and classification difficulty on the accuracy of genomic predictors

    Get PDF
    Introduction: As part of the MicroArray Quality Control (MAQC)-II project, this analysis examines how the choice of univariate feature-selection methods and classification algorithms may influence the performance of genomic predictors under varying degrees of prediction difficulty represented by three clinically relevant endpoints. Methods: We used gene-expression data from 230 breast cancers (grouped into training and independent validation sets), and we examined 40 predictors (five univariate feature-selection methods combined with eight different classifiers) for each of the three endpoints. Their classification performance was estimated on the training set by using two different resampling methods and compared with the accuracy observed in the independent validation set. Results: A ranking of the three classification problems was obtained, and the performance of 120 models was estimated and assessed on an independent validation set. The bootstrapping estimates were closer to the validation performance than were the cross-validation estimates. The required sample size for each endpoint was estimated, and both gene-level and pathway-level analyses were performed on the obtained models. Conclusions: We showed that genomic predictor accuracy is determined largely by an interplay between sample size and classification difficulty. Variations on univariate feature-selection methods and choice of classification algorithm have only a modest impact on predictor performance, and several statistically equally good predictors can be developed for any given classification problem

    Levels of different subtypes of tumour-infiltrating lymphocytes correlate with each other, with matched circulating lymphocytes, and with survival in breast cancer

    Get PDF
    Purpose: Breast cancer tumour-infiltrating lymphocytes associate with clinico-pathological factors, including survival, although the literature includes many conflicting findings. Our aim was to assess these associations for key lymphocyte subtypes and in different tumour compartments, to determine whether these provide differential correlations and could, therefore, explain published inconsistencies. Uniquely, we also examine whether infiltrating levels merely reflect systemic lymphocyte levels or whether local factors are predominant in recruitment. Methods: Immunohistochemistry was used to detect tumour-infiltrating CD20+ (B), CD4+ (helper T), CD8+ (cytotoxic T) and FoxP3+ (regulatory T) cells in breast cancers from 62 patients, with quantification in tumour stroma, tumour cell nests, and tumour margins. Levels were analysed with respect to clinico-pathological characteristics and matched circulating levels (determined by flow-cytometry). Results: CD4+ lymphocytes were the most prevalent subtype in tumour stroma and at tumour edge and CD8+ lymphocytes were most prevalent in tumour nests; FoxP3+ lymphocytes were rarest in all compartments. High grade or hormone receptor negative tumours generally had significantly increased lymphocytes, especially in tumour stroma. Only intra-tumoural levels of CD8+ lymphocytes correlated significantly with matched circulating levels (p < 0.03), suggesting that recruitment is mainly unrelated to systemic activity. High levels of stromal CD4+ and CD20+ cells associated with improved survival in hormone receptor negative cases (p < 0.04), while tumour nest CD8+ and FoxP3+ cells associated with poor survival in hormone receptor positives (p < 0.005). Conclusions: Lymphocyte subtype and location define differential impacts on tumour biology, therefore, roles of tumour-infiltrating lymphocytes will only be unravelled through thorough analyses that take this into account

    The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group

    Get PDF
    The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF

    The path to a better biomarker: Application of a risk management framework for the implementation of PD-L1 and TILs as immuno-oncology biomarkers in breast cancer clinical trials and daily practice

    Get PDF
    Immune checkpoint inhibitor therapies targeting PD-1/PD-L1 are now the standard of care in oncology across several hematologic and solid tumor types, including triple negative breast cancer (TNBC). Patients with metastatic or locally advanced TNBC with PD-L1 expression on immune cells occupying 651% of tumor area demonstrated survival benefit with the addition of atezolizumab to nab-paclitaxel. However, concerns regarding variability between immunohistochemical PD-L1 assay performance and inter-reader reproducibility have been raised. High tumor-infiltrating lymphocytes (TILs) have also been associated with response to PD-1/PD-L1 inhibitors in patients with breast cancer (BC). TILs can be easily assessed on hematoxylin and eosin\u2013stained slides and have shown reliable inter-reader reproducibility. As an established prognostic factor in early stage TNBC, TILs are soon anticipated to be reported in daily practice in many pathology laboratories worldwide. Because TILs and PD-L1 are parts of an immunological spectrum in BC, we propose the systematic implementation of combined PD-L1 and TIL analyses as a more comprehensive immuno-oncological biomarker for patient selection for PD-1/PD-L1 inhibition-based therapy in patients with BC. Although practical and regulatory considerations differ by jurisdiction, the pathology community has the responsibility to patients to implement assays that lead to optimal patient selection. We propose herewith a risk-management framework that may help mitigate the risks of suboptimal patient selection for immuno-therapeutic approaches in clinical trials and daily practice based on combined TILs/PD-L1 assessment in BC. \ua9 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd

    Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer

    Get PDF

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting
    corecore