12 research outputs found

    On the mass composition of primary cosmic rays in the energy region 10^15-10^16 eV

    Full text link
    The method of a determination of the Primary Cosmic Ray mass composition is presented. Data processing is based on the theoretical model representing the integral muon multiplicity spectrum as the superposition of the spectra corresponding to different kinds of primary nuclei. The method consists of two stages. At the first stage, the permissible intervals of primary nuclei fractions f_i are determined on the base of the EAS spectrum vs the total number of muons (E_mu > 235 GeV). At the second stage, the permissible intervals of f_i are narrowed by fitting procedure. We use the experimental data on high multiplicity muon events (n_mu > 114) collected at the Baksan underground scintillation telescope. Within the framework of three components (protons, helium and heavy nuclei), the mass composition in the region 10^15-10^16 eV has been defined: f_p = 0.235 +- 0.02, f_He = 0.290 +- 0.02$, f_H = 0.475 +- 0.03.Comment: 14 pages, 6 figure

    Recent Results from the VERITAS Collaboration

    Get PDF
    A decade after the discovery of TeV gamma-rays from the blazar Mrk 421 (Punch et al. 1992), the list of TeV blazars has increased to five BL Lac objects: Mrk 421 (Punch et al. 1992; Petry et al. 1996; Piron et al. 2001), Mrk 501 (Quinn et al. 1996; Aharonian et al. 1999; Djannati-Atai et al. 1999), 1ES2344+514 (Catanese et al. 1998), H1426+428 (Horan et al. 2000, 2002; Aharonian et al. 2002; Djannati-Atai et al. 2002) and 1ES1959+650 (Nishiyama et al. 1999; Konopelko et al. 2002; Holder et al. 2002). In this paper we report results from recent observations of Mrk 421, H1426+428 and 1ES1959+650 using the Whipple Observatory 10 m telescope

    Diffuse Gamma Rays: Galactic and Extragalactic Diffuse Emission

    Full text link
    "Diffuse" gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived "average" spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.Comment: 32 pages, 28 figures, kapproc.cls. Chapter to the book "Cosmic Gamma-Ray Sources," to be published by Kluwer ASSL Series, Edited by K. S. Cheng and G. E. Romero. More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm

    Highlight Talk: Recent Results from VERITAS

    Get PDF
    VERITAS is a state-of-the-art ground-based gamma-ray observatory that operates in the very high-energy (VHE) region of 100 GeV to 50 TeV. The observatory consists of an array of four 12m-diameter imaging atmospheric Cherenkov telescopes located in southern Arizona, USA. The four-telescope array has been fully operational since September 2007, and over the last two years, VERITAS has been operating with high efficiency and with excellent performance. This talk summarizes the recent results from VERITAS, including the discovery of eight new VHE gamma-ray sources

    Science capabilities of the VERITAS array of 10 m imaging atmospheric Cherenkov gamma-ray detectors

    No full text
    The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of seven 10m aperture telescopes used for gamma-ray astronomy in the 50 GeV to 50 TeV (1 TeV= 1012 electron Volt) energy range. The gamma rays are detected by measuring the optical Cherenkov light emitted by the cascade of electromagnetic particles that is generated by interactions of the high energy gamma-ray with the Earth's Atmosphere. This paper describes the science goals of the VERITAS array, a description of the array, and expected performance of the instrument

    ERRATUM: MULTI-WAVELENGTH OBSERVATIONS OF THE FLARING GAMMA-RAY BLAZAR 3C 66A IN 2008 OCTOBER (vol 726, pg 43, 2011)

    No full text
    This is an Erratum for the article 2011 ApJ 726 4

    Insights into the high-energy gamma-ray emission of markarian 501 from extensive multifrequency observations in the fermi era

    Get PDF
    We report on the gamma-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) gamma-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 +/- 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 +/- 0.14, and the softest one is 2.51 +/- 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size less than or similar to 0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (similar or equal to 10(44) erg s(-1)) constitutes only a small fraction (similar to 10(-3)) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude
    corecore