46 research outputs found

    Monarchs in Love and Other Stories

    Full text link
    Monarchs in Love and Other Stories is a collection of nine short stories. These stories are structurally and tonally heterogeneous, and it is this heterogeneity of form that emerges as the collection\u27s central concern. Present are stories which borrow other forms\u27 organizational conceits (the almanac entries of Excerpts from the Dwarf-Monger\u27s Handbook ), stories which arrange themselves around arbitrary organizational conceits (the order of the letters of the alphabet in 26 Characters ), and stories which employ radically traditional formal models ( Blind Boy and Mammoth. ) Present are stories narrated in the first-person point-of-view ( For a Walk, Harem Girls ), stories narrated in the second-person point-of-view ( Excerpts from the Dwarf-Monger\u27s Handbook, ), stories narrated in the third-person point of view ( Air, Elegy ), and stories which develop forms that utilize more than one style of point-of-view narration (second-person-singular and third-person-plural perspectives in Monarchs in Love. ) Present are works of magical realism ( In the Walrus Colony ), historical fantasy ( Excerpts from the Dwarf-Monger\u27s Handbook ), historical realism ( Air, Elegy ), and contemporary realism ( In the Palace of the Moon Sultan, For a Walk ). In short, Monarchs in Love and Other Stories attempts to explore as fully as possible the short story\u27s spectrum of form. As a collection, it hopes to make a virtue of its range

    Fire Suppression Impacts on Fuels and Fire Intensity in the Western U.S.: Insights from Archaeological Luminescence Dating in Northern New Mexico

    Get PDF
    Here, we show that the last century of fire suppression in the western U.S. has resulted in fire intensities that are unique over more than 900 years of record in ponderosa pine forests (Pinus ponderosa). Specifically, we use the heat-sensitive luminescence signal of archaeological ceramics and tree-ring fire histories to show that a recent fire during mild weather conditions was more intense than anything experienced in centuries of frequent wildfires. We support this with a particularly robust set of optically stimulated luminescence measurements on pottery from an archaeological site in northern New Mexico. The heating effects of an October 2012 CE prescribed fire reset the luminescence signal in all 12 surface samples of archaeological ceramics, whereas none of the 10 samples exposed to at least 14 previous fires (1696–1893 CE) revealed any evidence of past thermal impact. This was true regardless of the fire behavior contexts of the 2012 CE samples (crown, surface, and smoldering fires). It suggests that the fuel characteristics from fire suppression at this site have no analog during the 550 years since the depopulation of this site or the 350 years of preceding occupation of the forested landscape of this region

    Glastir Monitoring & Evaluation Programme. First year annual report

    Get PDF
    The Welsh Government has commissioned a comprehensive new ecosystem monitoring and evaluation programme to monitor the effects of Glastir, its new land management scheme, and to monitor progress towards a range of international biodiversity and environmental targets. A random sample of 1 km squares stratified by landcover types will be used both to monitor change at a national level in the wider countryside and to provide a backdrop against which intervention measures are assessed using a second sample of 1 km squares located in areas eligible for enhanced payments for advanced interventions. Modelling in the first year has forecast change based on current understanding, whilst a rolling national monitoring programme based on an ecosystem approach will provide an evidence-base for on-going, adaptive development of the scheme by Welsh Government. To our knowledge, this will constitute the largest and most in-depth ecosystem monitoring and evaluation programme of any member state of the European Union

    word~river literary review (2012)

    Full text link
    wordriver is a literary journal dedicated to the poetry, short fiction, and creative nonfiction of adjunct, part-time and fulltime instructors teaching under a semester or yearly contract in our universities, colleges, and community colleges worldwide. Graduate student teachers who have used up their teaching assistant time and are teaching with adjunct contracts for the remainder of their graduate program are also eligible. We’re looking for work that demonstrates the creativity and craft of adjunct/part-time instructors in English and other disciplines. We reserve first publication rights and onetime anthology publication rights for all work published. We do not accept simultaneous submissions.https://digitalscholarship.unlv.edu/word_river/1003/thumbnail.jp

    The North American tree-ring fire-scar network

    Get PDF
    Fire regimes in North American forests are diverse and modern fire records are often too short to capture important patterns, trends, feedbacks, and drivers of variability. Tree-ring fire scars provide valuable perspectives on fire regimes, including centuries-long records of fire year, season, frequency, severity, and size. Here, we introduce the newly compiled North American tree-ring fire-scar network (NAFSN), which contains 2562 sites, >37,000 fire-scarred trees, and covers large parts of North America. We investigate the NAFSN in terms of geography, sample depth, vegetation, topography, climate, and human land use. Fire scars are found in most ecoregions, from boreal forests in northern Alaska and Canada to subtropical forests in southern Florida and Mexico. The network includes 91 tree species, but is dominated by gymnosperms in the genus Pinus. Fire scars are found from sea level to >4000-m elevation and across a range of topographic settings that vary by ecoregion. Multiple regions are densely sampled (e.g., >1000 fire-scarred trees), enabling new spatial analyses such as reconstructions of area burned. To demonstrate the potential of the network, we compared the climate space of the NAFSN to those of modern fires and forests; the NAFSN spans a climate space largely representative of the forested areas in North America, with notable gaps in warmer tropical climates. Modern fires are burning in similar climate spaces as historical fires, but disproportionately in warmer regions compared to the historical record, possibly related to under-sampling of warm subtropical forests or supporting observations of changing fire regimes. The historical influence of Indigenous and non-Indigenous human land use on fire regimes varies in space and time. A 20th century fire deficit associated with human activities is evident in many regions, yet fire regimes characterized by frequent surface fires are still active in some areas (e.g., Mexico and the southeastern United States). These analyses provide a foundation and framework for future studies using the hundreds of thousands of annually- to sub-annually-resolved tree-ring records of fire spanning centuries, which will further advance our understanding of the interactions among fire, climate, topography, vegetation, and humans across North America

    Harnessing the NEON data revolution to advance open environmental science with a diverse and data-capable community

    Get PDF
    It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building

    A Test of “Annual Resolution” in Stalagmites Using Tree Rings

    Get PDF
    So-called annual banding has been identified in a number of speleothems in which the number of bands approximates the time interval between successive U-series dates. The apparent annual resolution of speleothem records, however, remains largely untested. Here we statistically compare variations in band thickness from a late Holocene stalagmite in Carlsbad Cavern, Southern New Mexico, USA, with three independent tree-ring chronologies form the same region.We found no correspondence. Although there may be various explanations for the discordance, this limited exercise suggests that banded stalagmites should be held to the same rigorous standards in chronology building and climatic inference as annually resolved tree rings, corals, and ice cores

    UAS-Based Plant Phenotyping for Research and Breeding Applications

    No full text
    Unmanned aircraft system (UAS) is a particularly powerful tool for plant phenotyping, due to reasonable cost of procurement and deployment, ease and flexibility for control and operation, ability to reconfigure sensor payloads to diversify sensing, and the ability to seamlessly fit into a larger connected phenotyping network. These advantages have expanded the use of UAS-based plant phenotyping approach in research and breeding applications. This paper reviews the state of the art in the deployment, collection, curation, storage, and analysis of data from UAS-based phenotyping platforms. We discuss pressing technical challenges, identify future trends in UAS-based phenotyping that the plant research community should be aware of, and pinpoint key plant science and agronomic questions that can be resolved with the next generation of UAS-based imaging modalities and associated data analysis pipelines. This review provides a broad account of the state of the art in UAS-based phenotyping to reduce the barrier to entry to plant science practitioners interested in deploying this imaging modality for phenotyping in plant breeding and research areas
    corecore