183 research outputs found

    Graves\u27 Disease and Major Histocompatibility Complex Class II: A Meta-Analysis of HLA-DQ and HLA-DRB1

    Get PDF
    Background: Human leukocyte antigen (HLA) class II has shown potential in determining prognosis, understanding medication reactions, and predicting onset of Graves’ disease. The aim of this study is to further investigate the association between Graves’ disease and HLA class II, specifically HLA-DQ and HLA-DR, via meta-analysis to find HLAs that can be further examined for prognostic reasons. Methods: Statistical analysis was performed to determine if variants of HLA-DQA1, HLA-DQB1, or HLA-DRB1 were associated with significantly altered odds of Graves’ disease. A minimum of three studies pertaining to a particular HLA was required for inclusion. Studies were excluded if they lacked inclusion criteria. Results: 27 studies were included. Odds of associated HLAs in Graves’ disease patients versus controls were increased for HLA-DQA1*03:01 (OR = 1.30 [1.03, 1.63], IÂČ =0%, p Discussion: These findings offer new connections between HLAs and Graves’ disease that may be applied to prognosis, treatment, and autoimmune mechanistic understanding for MHC class II in Graves’ disease

    Accumulation of muscle ankyrin repeat protein transcript reveals local activation of primary myotube endcompartments during muscle morphogenesis

    Get PDF
    The characteristic shapes and positions of each individual body muscle are established during the process of muscle morphogenesis in response to patterning information from the surrounding mesenchyme. Throughout muscle morphogenesis, primary myotubes are arranged in small parallel bundles, each myotube spanning the forming muscles from end to end. This unique arrangement potentially assigns a crucial role to primary myotube end regions for muscle morphogenesis. We have cloned muscle ankyrin repeat protein (MARP) as a gene induced in adult rat skeletal muscle by denervation. MARP is the rodent homologue of human C-193 (Chu, W., D.K. Burns, R.A. Swerick, and D.H. Presky. 1995. J. Biol. Chem. 270:10236-10245) and is identical to rat cardiac ankyrin repeat protein. (Zou, Y., S. Evans, J. Chen, H.-C. Kuo, R.P. Harvey, and K.R. Chien. 1997. Development. 124:793-804). In denervated muscle fibers, MARP transcript accumulated in a unique perisynaptic pattern. MARP was also expressed in large blood vessels and in cardiac muscle, where it was further induced by cardiac hypertrophy. During embryonic development, MARP was expressed in forming skeletal muscle. In situ hybridization analysis in mouse embryos revealed that MARP transcript exclusively accumulates at the end regions of primary myotubes during muscle morphogenesis. This closely coincided with the expression of thrombospondin-4 in adjacent prospective tendon mesenchyme, suggesting that these two compartments may constitute a functional unit involved in muscle morphogenesis. Transfection experiments established that MARP protein accumulates in the nucleus and that the levels of both MARP mRNA and protein are controlled by rapid degradation mechanisms characteristic of regulatory early response genes. The results establish the existence of novel regulatory muscle fiber subcompartments associated with muscle morphogenesis and denervation and suggest that MARP may be a crucial nuclear cofactor in local signaling pathways from prospective tendon mesenchyme to forming muscle and from activated muscle interstitial cells to denervated muscle fibers

    Dance like Bacteria Wonder with Me! Embracing Microbiology through Science and Art from Primary School to University

    Get PDF
    The literature tells us that art can enhance the teaching of science. We have used some of these documented strategies in our teaching of microbiology in primary - and high school outreach and in our microbiology classes at university. We have blended art and science in a variety of ways (e.g. dancing and telling stories) to provide our students with richer, more memorable learning experiences. Primary school students were treated to a day of immersion in microbiology where songs, animations, peer learning, art and baking became integral to their learning. For high school outreach, we imagined time travel and invited university acting students to play scientists telling their stories from history to bring to life ‘moments’ in microbiology. At university, first-year students danced like bacteria to reinforce the types of movement and appendages that some bacteria have. Humour, poetry, songs and mnemonics were also used to not only enhance learning but to remind students that learning is fun and encompasses all aspects of life. We continue to explore a transdiciplinarity approach were the boundaries between disciplines are blurred and the artist becomes a scientist and vice versa on a creative holistic learning journey of discovery

    C/EBP alpha and GATA-2 Mutations Induce Bilineage Acute Erythroid Leukemia through Transformation of a Neomorphic Neutrophil-Erythroid Progenitor

    Get PDF
    Acute erythroid leukemia (AEL) commonly involves both myeloid and erythroid lineage transformation. However, the mutations that cause AEL and the cell(s) that sustain the bilineage leukemia phenotype remain unknown. We here show that combined biallelic Cebpa and Gata2 zinc finger-1 (ZnF1) mutations cooperatively induce bilineage AEL, and that the major leukemia-initiating cell (LIC) population has a neutrophil-monocyte progenitor (NMP) phenotype. In pre-leukemic NMPs Cebpa and Gata2 mutations synergize by increasing erythroid transcription factor (TF) expression and erythroid TF chromatin access, respectively, thereby installing ectopic erythroid potential. This erythroid-permissive chromatin conformation is retained in bilineage LICs. These results demonstrate that synergistic transcriptional and epigenetic reprogramming by leukemia-initiating mutations can generate neomorphic pre-leukemic progenitors, defining the lineage identity of the resulting leukemia

    Towards a New Paradigm of Non-Captive Research on Cetacean Cognition

    Get PDF
    Contemporary knowledge of impressive neurophysiology and behavior in cetaceans, combined with increasing opportunities for studying free-ranging cetaceans who initiate sociable interaction with humans, are converging to highlight serious ethical considerations and emerging opportunities for a new era of progressive and less-invasive cetacean research. Most research on cetacean cognition has taken place in controlled captive settings, e.g., research labs, marine parks. While these environments afford a certain amount of experimental rigor and logistical control they are fraught with limitations in external validity, impose tremendous stress on the part of the captive animals, and place burdens on populations from which they are often captured. Alternatively, over the past three decades, some researchers have sought to focus their attention on the presence of free-ranging cetacean individuals and groups who have initiated, or chosen to participate in, sociable interactions with humans in the wild. This new approach, defined as Interspecies Collaborative Research between cetacean and human, involves developing novel ways to address research questions under natural conditions and respecting the individual cetacean's autonomy. It also offers a range of potential direct benefits to the cetaceans studied, as well as allowing for unprecedented cognitive and psychological research on sociable mysticetes. Yet stringent precautions are warranted so as to not increase their vulnerability to human activities or pathogens. When conducted in its best and most responsible form, collaborative research with free-ranging cetaceans can deliver methodological innovation and invaluable new insights while not necessitating the ethical and scientific compromises that characterize research in captivity. Further, it is representative of a new epoch in science in which research is designed so that the participating cetaceans are the direct recipients of the benefits

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Targeting the RhoGEF ÎČPIX/COOL-1 in Glioblastoma: Proof of Concept Studies

    Get PDF
    Glioblastoma (GBM), a highly invasive and vascular malignancy is shown to rapidly develop resistance and evolve to a more invasive phenotype following bevacizumab (Bev) therapy. Rho Guanine Nucleotide Exchange Factor proteins (RhoGEFs) are mediators of key components in Bev resistance pathways, GBM and Bev-induced invasion. To identify GEFs with enhanced mRNA expression in the leading edge of GBM tumours, a cohort of GEFs was assessed using a clinical dataset. The GEF ÎČPix/COOL-1 was identified, and the functional effect of gene depletion assessed using 3D-boyden chamber, proliferation, and colony formation assays in GBM cells. Anti-angiogenic effects were assessed in endothelial cells using tube formation and wound healing assays. In vivo effects of ÎČPix/COOL-1-siRNA delivered via RGD-Nanoparticle in combination with Bev was studied in an invasive model of GBM. We found that siRNA-mediated knockdown of ÎČPix/COOL-1 in vitro decreased cell invasion, proliferation and increased apoptosis in GBM cell lines. Moreover ÎČPix/COOL-1 mediated endothelial cell migration in vitro. Mice treated with ÎČPix/COOL-1 siRNA-loaded RGD-Nanoparticle and Bev demonstrated a trend towards improved median survival compared with Bev monotherapy. Our hypothesis generating study suggests that the RhoGEF ÎČPix/COOL-1 may represent a target of vulnerability in GBM, in particular to improve Bev efficacy

    Effect of lactation stage and concurrent pregnancy on milk composition in the bottlenose dolphin

    Get PDF
    Although many toothed whales (Cetacea: Odontoceti) lactate for 2–3 years or more, it is not known whether milk composition is affected by lactation stage in any odontocete species. We collected 64 pooled milk samples spanning 1–30 months postpartum from three captive bottlenose dolphins Tursiops truncatus. Milks were assayed for water, fat, crude protein (TN × 6.38) and sugar; gross energy was calculated. Ovulation and pregnancy were determined via monitoring of milk progesterone. Based on analysis of changes in milk composition for each individual dolphin, there were significant increases (P<0.05) in fat (in all three dolphins) and crude protein (in two of three), and a decrease (P<0.05) in water (in two of three) over the course of lactation, but the sugar content did not change. In all three animals, the energy content was positively correlated with month of lactation, but the percentage of energy provided by crude protein declined slightly but significantly (P<0.05). At mid-lactation (7–12 months postpartum, n=17), milk averaged 73.0±1.0% water, 12.8±1.0% fat, 8.9±0.5% crude protein, 1.0±0.1% sugar, 1.76±0.09 kcal g−1 (=7.25 kJ g−1) and 30.3±1.3% protein:energy per cent. This protein:energy per cent was surprisingly high compared with other cetaceans and in relation to the growth rates of calves. Milk progesterone indicated that dolphins ovulated and conceived between 413 and 673 days postpartum, following an increase in milk energy density. The significance of these observed compositional changes to calf nutrition will depend on the amounts of milk produced at different stages of lactation, and how milk composition and yield are influenced by sampling procedure, maternal diet and maternal condition, none of which are known
    • 

    corecore