2,221 research outputs found
Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean
In the Ocean, the seasonal cycle is the mode that couples climate forcing to ecosystem response in production, diversity and carbon export. A better characterisation of the ecosystem's seasonal cycle therefore addresses an important gap in our ability to estimate the sensitivity of the biological pump to climate change. In this study, the regional characteristics of the seasonal cycle of phytoplankton biomass in the Southern Ocean are examined in terms of the timing of the bloom initiation, its amplitude, regional scale variability and the importance of the climatological seasonal cycle in explaining the overall variance. The seasonal cycle was consequently defined into four broad zonal regions; the subtropical zone (STZ), the transition zone (TZ), the Antarctic circumpolar zone (ACZ) and the marginal ice zone (MIZ). Defining the Southern Ocean according to the characteristics of its seasonal cycle provides a more dynamic understanding of ocean productivity based on underlying physical drivers rather than climatological biomass. The response of the biology to the underlying physics of the different seasonal zones resulted in an additional classification of four regions based on the extent of inter-annual seasonal phase locking and the magnitude of the integrated seasonal biomass. This regionalisation contributes towards an improved understanding of the regional differences in the sensitivity of the Southern Oceans ecosystem to climate forcing, potentially allowing more robust predictions of the effects of long term climate trends
Influence of future air pollution mitigation strategies on total aerosol radiative forcing
We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030) and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030). We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to -2.00 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2) under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by -1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing could be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extent be controlled by greenhouse gas emissions. We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in oxidant concentrations and the importance of the aerosol microphysical coupling within the range of expected future changes. For changes in oxidant concentrations caused by future air pollution mitigation, we do not find a significant effect for the global annual mean radiative aerosol forcing. In the extreme case of only abating SO2 or carbonaceous emissions to a maximum feasible extent, we find deviations from additivity for the radiative forcing over anthropogenic source regions up to 10% compared to an experiment abating both at the same time
Masculine generic pronouns as a gender cue in generic statements
An eye-tracking experiment was conducted with speakers of Dutch (N = 84, 36 male), a language that falls between grammatical and natural-gender languages. We tested whether a masculine generic pronoun causes a male bias when used in generic statements—that is, in the absence of a specific referent. We tested two types of generic statements by varying conceptual number, hypothesizing that the pronoun zijn “his” was more likely to cause a male bias with a conceptually singular than a conceptually plural ante-cedent (e.g., Someone (conceptually singular)/Everyone (conceptually plural) with perfect pitch can tune his instrument quickly). We found male participants to exhibit a male bias but with the conceptually singular antecedent only. Female participants showed no signs of a male bias. The results show that the generically intended masculine pronoun zijn “his” leads to a male bias in conceptually singular generic contexts but that this further depends on participant gender
Soft two-meson-exchange nucleon-nucleon potentials. II. One-pair and two-pair diagrams
Two-meson-exchange nucleon-nucleon potentials are derived where either one or
both nucleons contains a pair vertex. Physically, the meson-pair vertices are
meant to describe in an effective way (part of) the effects of heavy-meson
exchange and meson-nucleon resonances. {}From the point of view of ``duality,''
these two kinds of contribution are roughly equivalent. The various
possibilities for meson pairs coupling to the nucleon are inspired by the
chiral-invariant phenomenological Lagrangians that have appeared in the
literature. The coupling constants are fixed using the linear model.
We show that the inclusion of these two-meson exchanges gives a significant
improvement over a potential model including only the standard one-boson
exchanges.Comment: 21 pages RevTeX, 7 postscript figures; revised version as to appear
in Phys. Rev.
Robust zero-energy modes in an electronic higher-order topological insulator: the dimerized Kagome lattice
Quantum simulators are an essential tool for understanding complex quantum
materials. Platforms based on ultracold atoms in optical lattices and photonic
devices led the field so far, but electronic quantum simulators are proving to
be equally relevant. Simulating topological states of matter is one of the holy
grails in the field. Here, we experimentally realize a higher-order electronic
topological insulator (HOTI). Specifically, we create a dimerized Kagome
lattice by manipulating carbon-monoxide (CO) molecules on a Cu(111) surface
using a scanning tunneling microscope (STM). We engineer alternating weak and
strong bonds to show that a topological state emerges at the corner of the
non-trivial configuration, while it is absent in the trivial one. Contrarily to
conventional topological insulators (TIs), the topological state has two
dimensions less than the bulk, denoting a HOTI. The corner mode is protected by
a generalized chiral symmetry, which leads to a particular robustness against
perturbations. Our versatile approach to quantum simulation with artificial
lattices holds promises of revealing unexpected quantum phases of matter
Effective range expansion in various scenarios of EFT(\notpi)
Using rigorous solutions, we compare the ERE parameters obtained in three
different scenarios of EFT(\notpi) in nonperturbative regime. A scenario with
unconventional power counting (like KSW) is shown to be disfavored by the PSA
data, while the one with elaborate prescription of renormalization but keeping
conventional power counting intact seems more promising.Comment: 6 pages, 3 tables, no figure, revtex4-1, minor revisions, to appear
in EP
Soft-core meson-baryon interactions. II. and scattering
The potential includes the t-channel exchanges of the scalar-mesons
and f_0, vector-meson , tensor-mesons f_2 and f_2' and the
Pomeron as well as the s- and u-channel exchanges of the nucleon N and the
resonances , Roper and S_{11}. These resonances are not generated
dynamically. We consider them as, at least partially, genuine three-quark
states and we treat them in the same way as the nucleon. The latter two
resonances were needed to find the proper behavior of the phase shifts at
higher energies in the corresponding partial waves. The soft-core -model
gives an excellent fit to the empirical S- and P-wave phase shifts up
to T_{lab}=600 MeV. Also the scattering lengths have been reproduced well and
the soft-pion theorems for low-energy scattering are satisfied. The
soft-core model for the interaction is an SU_f(3)-extension of the
soft-core -model. The potential includes the t-channel exchanges
of the scalar-mesons a_0, and f_0, vector-mesons , and
, tensor-mesons a_2, f_2 and f_2' and the Pomeron as well as u-channel
exchanges of the hyperons and . The fit to the empirical S-, P- and D-wave phase shifts up to T_{lab}=600 MeV is reasonable and
certainly reflects the present state of the art. Since the various
phase shift analyses are not very consistent, also scattering observables are
compared with the soft-core -model. A good agreement for the total and
differential cross sections as well as the polarizations is found.Comment: 24 pages, 20 PostScript figures, revtex4, submitted to Phys. Rev.
- …