13,117 research outputs found
On the decode error probability for Reed-Solomon codes
Upper bounds on the decoder error probability for Reed-Solomon codes are derived. By definition, decoder error occurs when the decoder finds a codeword other than the transmitted codeword; this is in contrast to decoder failure, which occurs when the decoder fails to find any codeword at all. The results imply, for example, that for a t error correcting Reed-Solomon code of length q - 1 over GF(q), if more than t errors occur, the probability of decoder error is less than 1/t! In particular, for the Voyager Reed-Solomon code, the probability of decoder error given a word error is smaller than 3 x 10 to the minus 14th power. Thus, in a typical operating region with probability 100,000 of word error, the probability of undetected word error is about 10 to the minus 14th power
Simple pressure gauge for uranium hexafluoride
A sensitive detector and pressure gauge for uranium hexafluoride in highâvacuum systems is described. Negative surface ionization of UF_6 occurs on ribbon filaments operated at temperatures too low for electron emission to be significant. The ion current measured on a cylindrical collector surrounding the filament assembly varies regularly with UF_6 pressure below 10^(â3) Torr. Different filament materials are considered, including rhenium, thoriated tungsten, and platinum. Rhenium is found to be the most satisfactory material for operation of diode emitters as a pressure gauge. Gauge constants (in AâTorr^(â1)) are derived from comparing negative surface ionization currents with the response of a capacitance manometer and are shown to be independent of temperature within a reasonable operating range. The effects of exposing the rhenium filament to various gases is considered, and it is shown that brief exposure to acetylene substantially improves the operating characteristics of the gauge
A note on the wideband Gaussian broadcast channel
It is well known that for the Gaussian broadcast channel, timeshared coding is not as efficient as more sophisticated broadcast coding strategies. However, the relative advantage of broadcast coding over timeshared coding is shown to be small if the signal-to-noise ratios of both receivers are small. One surprising consequence of this is that for the wideband Gaussian broadcast channel, which is defined, broadcast coding offers no advantage over timeshared coding at all, and so timeshared coding is optimal
Behavior of various adsorbates on metal substrates quarterly progress report no. 3, 1 dec. 1964 - 28 feb. 1965
Vacuum breakdown studies - surface kinetics of adsorbed layers by field emission, sputtering of metallic surfaces, and electron interactions with adsorbed layers on metallic surface
Recent advances in coding theory for near error-free communications
Channel and source coding theories are discussed. The following subject areas are covered: large constraint length convolutional codes (the Galileo code); decoder design (the big Viterbi decoder); Voyager's and Galileo's data compression scheme; current research in data compression for images; neural networks for soft decoding; neural networks for source decoding; finite-state codes; and fractals for data compression
Canonical Transformations and Path Integral Measures
This paper is a generalization of previous work on the use of classical
canonical transformations to evaluate Hamiltonian path integrals for quantum
mechanical systems. Relevant aspects of the Hamiltonian path integral and its
measure are discussed and used to show that the quantum mechanical version of
the classical transformation does not leave the measure of the path integral
invariant, instead inducing an anomaly. The relation to operator techniques and
ordering problems is discussed, and special attention is paid to incorporation
of the initial and final states of the transition element into the boundary
conditions of the problem. Classical canonical transformations are developed to
render an arbitrary power potential cyclic. The resulting Hamiltonian is
analyzed as a quantum system to show its relation to known quantum mechanical
results. A perturbative argument is used to suppress ordering related terms in
the transformed Hamiltonian in the event that the classical canonical
transformation leads to a nonquadratic cyclic Hamiltonian. The associated
anomalies are analyzed to yield general methods to evaluate the path integral's
prefactor for such systems. The methods are applied to several systems,
including linear and quadratic potentials, the velocity-dependent potential,
and the time-dependent harmonic oscillator.Comment: 28 pages, LaTe
Quantum Hamilton-Jacobi equation
The nontrivial transformation of the phase space path integral measure under
certain discretized analogues of canonical transformations is computed. This
Jacobian is used to derive a quantum analogue of the Hamilton-Jacobi equation
for the generating function of a canonical transformation that maps any quantum
system to a system with a vanishing Hamiltonian. A formal perturbative solution
of the quantum Hamilton-Jacobi equation is given.Comment: 4 pages, RevTe
Conductivity in Jurkat cell suspension after ultrashort electric pulsing
Ultrashort electric pulses applied to similar cell lines such as Jurkat and HL-60 cells can produce markedly different results , which have been documented extensively over the last few years. We now report changes in electrical conductivity of Jurkat cells subjected to traditional electroporation pulses (50 ms pulse length) and ultrashort pulses (10 ns pulse length) using time domain dielectric spectroscopy (TDS). A single 10 ns, 150 kV/cm pulse did not noticeably alter suspension conductivity while a 50 ms, 2.12 kV/cm pulse with the same energy caused an appreciable conductivity rise. These results support the hypothesis that electroporation pulses primarily interact with the cell membrane and cause conductivity rises due to ion transport from the cell to the external media, while pulses with nanosecond duration primarily interact with the membranes of intracellular organelles. However, multiple ultrashort pulses have a cumulative effect on the plasma membrane, with five pulses causing a gradual rise in conductivity up to ten minutes post-pulsing
Synergistic Monitoring â Addressing the Threats and Identifying Opportunities
For many years, land managers and scientists have been applying a variety of land treatments to improve or protect rangeland ecosystems. Collectively, we have studied the response of these treatments and wildfire events to identify opportunities for maintaining or improving Nevada sagebrush ecosystem health and functionality. In partnership with collaborators, we initiated a State-wide effort to capture, consolidate, and summarize implementation, monitoring, and research information for these events. We are conducting field studies to identify and fill information gaps. We seek a new and expanded information base that is available to Nevada land managers, scientists, and others interested in healthy and resilient sagebrush sites. We plan to identify the consequences of passive and active management; develop predictive tools for adaptive management; identify research needs; and increase accessibility to location, implementation and monitoring information for these events. Through the collaborative integration of our field study results with historic and current research and monitoring information, we seek to increase knowledge of landscape-level and site-specific ecological processes. This will further develop our ability to manage and predict rangeland health, integrity, resilience (after disturbance), and resistance (to undesired change under significant disturbance regimes) in the context of multiple-use management
Nanosecond electric pulses penetrate the nucleus and enhance speckle formation
Nanosecond electric pulses generate nanopores in the interior membranes of cells and modulate cellular functions. Here, we used confocal microscopy and flow cytometry to observe Smith antigen antibody (Y12) binding to nuclear speckles, known as small nuclear ribonucleoprotein particles (snRNPs) or intrachromatin granule clusters (IGCs), in Jurkat cells following one or five 10 ns, 150 kV/cm pulses. Using confocal microscopy and flow cytometry, we observed changes in nuclear speckle labeling that suggested a disruption of pre-messenger RNA splicing mechanisms. Pulse exposure increased the nuclear speckled substructures by 2.5-fold above basal levels while the propidium iodide (PI) uptake in pulsed cells was unchanged. The resulting nuclear speckle changes were also cell cycle dependent. These findings suggest that 10 ns pulses directly influenced nuclear processes, such as the changes in the nuclear RNAâprotein complexes
- âŠ