7 research outputs found

    Global Properties of fp-Shell Interactions in Many-nucleon Systems

    Get PDF
    Spectral distribution theory, which can be used to compare microscopic interactions over a broad range of nuclei, is applied in an analysis of two modern effective interactions based on the realistic CD-Bonn potential for 0Ω0\hbar\Omega no-core shell model calculations in the fp shell, as well as in a comparison of these with the realistic shell-model GXPF1 interaction. In particular, we explore the ability of these interaction to account for the development of isovector pairing correlations and collective rotational motion in the fp shell. Our findings expose the similarities of these two-body interactions, especially as this relates to their pairing and rotational characteristics. Further, the GXPF1 interaction is used to determine the strength parameter of a quadrupole term that can be used to augment an isovector-pairing model interaction with Sp(4) dynamical symmetry, which in turn is shown to yield reasonable agreement with the low-lying energy spectra of 58^{58}Ni and 58^{58}Cu.Comment: 21 pages, 3 figures, accepted in Nuclear Physics

    Thermostatistics of deformed bosons and fermions

    Full text link
    Based on the q-deformed oscillator algebra, we study the behavior of the mean occupation number and its analogies with intermediate statistics and we obtain an expression in terms of an infinite continued fraction, thus clarifying successive approximations. In this framework, we study the thermostatistics of q-deformed bosons and fermions and show that thermodynamics can be built on the formalism of q-calculus. The entire structure of thermodynamics is preserved if ordinary derivatives are replaced by the use of an appropriate Jackson derivative and q-integral. Moreover, we derive the most important thermodynamic functions and we study the q-boson and q-fermion ideal gas in the thermodynamic limit.Comment: 14 pages, 2 figure

    A comparative study on q-deformed fermion oscillators

    Full text link
    In this paper, the algebras, representations, and thermostatistics of four types of fermionic q-oscillator models, called fermionic Newton (FN), Chaichian-Kulish-Ng (CKN), Parthasarathy-Viswanathan-Chaichian (PVC), Viswanathan-Parthasarathy-Jagannathan-Chaichian (VPJC), are discussed. Similarities and differences among the properties of these models are revealed. Particular emphasis is given to the VPJC-oscillators model so that its Fock space representation is analyzed in detail. Possible physical applications of these models are concisely pointed out.Comment: 32 pages, 2 figures, to appear in Int. J. Theor. Phys. (IJTP
    corecore