8 research outputs found

    Regeneration of a fibrous sorbent based on a centrifugal process for environmental geology of oil and groundwater degradation

    Get PDF
    Data were obtained in the experimental study of the process of regeneration of the fibrous sorbent centrifugally. This data characterised the dependence of the sorption rate of fibre loss in the regeneration of fibrous sorbent quality. We found that the increase of sorbent samples regeneration cycles based on polyethyleneterephthalate (PET) fibre of 1 to 50 leads to sorption reduction ratio of 20… 60 % and a weight loss of sorbent is 25-47 %. If the shelf life is increased up to three years, the sorbent does not reduce the rate of sorption and leads to increased sorbent losses due to its mechanical destruction during regeneration in a custom installation centrifugal experimental stand. It was established experimentally that the rate of oil sorption and oil, defined as the ratio of the mass of oil sorbed to the weight of the sorbent used, depends on the mean diameter of the fibres, the sorbent structure and viscosity petroleum products and varies between 5-20. It is also believed that all of the capillaries are filled uniformly and completely with a liquid. Another result of this research is the increase in the process productivity by increasing the average diameter of fibres, reducing the transverse dimension of the fibrous sorbent and increasing the radius and angular speed of the centrifuge perforated drum. A new experimental stand for centrifugal plant separating oil products from fibrous sorbent material has been proposed, which could be used to fight the oil pollution. This is the method used in environmental geology in the degradation of oil. Such a method can be extended to lower the groundwater or geological drilling. © 2016, Technical University of Kosice. All rights reserved

    Mathematical model of washing of filtration cake

    Get PDF
    The issue of this article is one stage washing of reaction blend after enzyme hydrolysis under which we are able to recycle almost all contained chromium in solid leather waste. During hydrolysis we gain protein hydrolysate as a filtrate that is appropriate substance for use. On the basis of equation for streaming of liquids through layer of substance we determined optimal pressure differential for filtering and washing of reaction mix and we applied mathematical description valid for filtering and one stage washing and on the basis of this models we able to optimize washing process that is add to filtering and which aim is to reduce content of protein hydrolysate in filter cake

    Determination of Melting Unit Productivity in Synthetic Fibrous Materials Production by Vertical Blowing Method

    No full text
    This paper presents the technology of production of synthetic fibrous materials from PET-raw by vertical blowing method. Fibre production by vertical blowing method is accompanied by complex and specific phenomena; therefore, development of new progressive technologies, high-performance machines and units for producing such materials is impossible without process modelling, which can significantly reduce the number of natural tests, cost and designing time and select optimal operating modes. Molten material motion in the melting unit of the hydrostatic type is determined by means of Poiseuille formula. Furthermore, the paper has proven that the melting unit has the greatest impact on process productivity by means of outlet radius and the pressure change of compressed air acting on the molten material surface. Increase in the height of the molten material column in the main cylindrical chamber of melting unit also leads to an increase in process productivity

    The design technique of melting units for production of synthetic ifbrous materials by vertical blowing method

    No full text
    This paper presents the technology of production of synthetic fibrous materials from PET-row by vertical blowing method. The formation of fibers from the melt of thermoplastics by vertical blowing method is accompanied by complex and specific phenomena, so creation of new progressive technologies, high-performance machines and units for producing such materials is impossible without process modeling, which can significantly reduce the number of natural tests, cost and development time and choose optimal operating modes. The motion of the molten material in the melting unit of the hydrostatic type is determined from the Poiseuille formula. Also in the article proved that the greatest impact on process productivity is made by the melting unit, exactly by outlet radius and the pressure change of compressed air, acting on the molten material surface. The increase in the height of the molten material column in the main cylindrical chamber of melting unit also leads to increase of process productivity

    Development and Testing of a Block Hydrocyclone

    No full text
    The study aimed to theoretically substantiate the efficiency of liquid purification and obtain corroborating experimental data for a hydrocyclone, consisting of several blocks. Mathematical models of the process of hydrodynamic fluid filtration were developed with the use of screw swirlers. The obtained mathematical models characterize all the main processes of fluid movement in various zones of the functioning of the hydrocyclone. Formulas for calculating the structures of hydrocyclone blocks are included. A block for swirling the flow of the liquid to be cleaned has been made in the form of a three-way screw. For the first time, wear-resistant and high-strength plastic ZEDEX ZX-324 has been used as a material. An experimental study was conducted and the change in the Reynolds number and the coefficient of fluid consumption was shown, using different constructions of the three-way screw. The research results confirmed the correctness and sufficiency of mathematical models for the development and production of block hydrocyclones

    Modeling of Boring Mandrel Working Process with Vibration Damper

    No full text
    The article considers the issue of modeling the oscillations of a boring mandrel with vibration damper connected to the mandrel with a viscoelastic coupling. A mathematical model of the boring mandrel oscillations, machine support and inertial body (damper) is developed in the form of a differential equations system. The model is made in the form of a four-mass system of connected bodies. The solution to the differential equations system was found using the finite difference method, as well as the operator method with the use of the Laplace transform. As the simulation result, it was found that the use of vibration damper can significantly reduce the amplitude of the boring mandrel natural vibrations when pulsed, and also significantly reduce the forced vibrations amplitude when exposed to periodic disturbing forces. The developed mathematical model and algorithms for the numerical solution to the differential equations allowed us to choose the optimal parameters of the boring mandrel damping element. The obtained data will be used to create a prototype boring mandrel and conduct field tests

    One-Day Prognoses of Methane Concentrations for the 102 Longwall in the 325/1 Seam in the “W” Coal Mine Operating in a Continuous System

    No full text
    The first part of the paper concerns the natural deposition conditions of the 325/1 seam in the “W” coal mine, in the 102 longwall mining panel. It also presents the most important technical conditions regarding the exploitation at this longwall. To characterize the methane hazard in the longwall area, the parameters of ventilation and total methane concentrations as well as the volumetric flowrate of methane captured by the methane removal system, have been presented graphically. A significant part of the methane flow in the longwall area was released to the air flowing to the longwall. The most significant part of the article is the presentation and analysis of the results of prognoses of mean methane concentrations at the exhaust of the longwall area. The accuracy of the prognoses of methane concentration was verified using two methods: while not considering the release of methane to the air flowing to the longwall and while considering the total flowrate of methane to the ventilation air in the area of the 102 longwall. The method of forecast presented in the article has so far been checked for a 5-day and 6-day work day, as well as for walls operating in a non-regular mode. The article refers to the wall operating in a continuous mode, which required adaptation of the proposed method to this mode. The application of the one-day forecast proposed in the article allows for undertaking temporary methane prevention measures enabling safe use of the wall
    corecore