378 research outputs found

    Establishment of forest plantations with container tree seedlings

    Get PDF

    Control of sympathetic vasomotor tone by catecholaminergic C1 neurones of the rostral ventrolateral medulla oblongata

    Get PDF
    C1 - Journal Articles RefereedAIMS: Increased sympathetic tone in obstructive sleep apnoea results from recurrent episodes of systemic hypoxia and hypercapnia and might be an important contributor to the development of cardiovascular disease. In this study, we re-evaluated the role of a specific population of sympathoexcitatory catecholaminergic C1 neurones of the rostral ventrolateral medulla oblongata in the control of sympathetic vasomotor tone, arterial blood pressure, and hypercapnia-evoked sympathetic and cardiovascular responses. METHODS AND RESULTS: In anaesthetized rats in vivo and perfused rat working heart brainstem preparations in situ, C1 neurones were acutely silenced by application of the insect peptide allatostatin following cell-specific targeting with a lentiviral vector to express the inhibitory Drosophila allatostatin receptor. In anaesthetized rats with denervated peripheral chemoreceptors, acute inhibition of 50% of the C1 neuronal population resulted in ∼50% reduction in renal sympathetic nerve activity and a profound fall in arterial blood pressure (by ∼25 mmHg). However, under these conditions systemic hypercapnia still evoked vigorous sympathetic activation and the slopes of the CO(2)-evoked sympathoexcitatory and cardiovascular responses were not affected by inhibition of C1 neurones. Inhibition of C1 neurones in situ resulted in a reversible fall in perfusion pressure and the amplitude of respiratory-related bursts of thoracic sympathetic nerve activity. CONCLUSION: These data confirm a fundamental physiological role of medullary catecholaminergic C1 neurones in maintaining resting sympathetic vasomotor tone and arterial blood pressure. However, C1 neurones do not appear to mediate sympathoexcitation evoked by central actions of CO(2)

    Introgression of a major QTL from an inferior into a superior population using genomic selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Selection schemes aiming at introgressing genetic material from a donor into a recipient line may be performed by backcross-breeding programs combined with selection to preserve the favourable characteristics of the donor population. This stochastic simulation study investigated whether genomic selection can be effective in preserving a major quantitative trait locus (QTL) allele from a donor line during the backcrossing phase.</p> <p>Methods</p> <p>In a simulation study, two fish populations were generated: a recipient line selected for a production trait and a donor line characterized by an enhanced level of disease resistance. Both traits were polygenic, but one major QTL affecting disease resistance was segregating only within the donor line. Backcrossing was combined with three types of selection (for total merit index) among the crossbred individuals: classical selection, genomic selection using genome-wide dense marker maps, and gene-assisted genomic selection. It was assumed that production could be observed directly on the selection candidates, while disease resistance had to be inferred from tested sibs of the selection candidates.</p> <p>Results</p> <p>Classical selection was inefficient in preserving the target QTL through the backcrossing phase. In contrast, genomic selection (without specific knowledge of the target QTL) was usually effective in preserving the target QTL, and had higher genetic response to selection, especially for disease resistance. Compared with pure genomic selection, gene-assisted selection had an advantage with respect to disease resistance (28–40% increase in genetic gain) and acted as an extra precaution against loss of the target QTL. However, for total merit index the advantage of gene-assisted genomic selection over genomic selection was lower (4–5% increase in genetic gain).</p> <p>Conclusion</p> <p>Substantial differences between introgression programs using classical and genomic selection were observed, and the former was generally inferior with respect to both genetic gain and the ability to preserve the target QTL. Combining genomic selection with gene-assisted selection for the target QTL acted as an extra precaution against loss of the target QTL and gave additional genetic gain for disease resistance. However, the effect on total merit index was limited.</p

    Mutations of Different Molecular Origins Exhibit Contrasting Patterns of Regional Substitution Rate Variation

    Get PDF
    Transitions at CpG dinucleotides, referred to as “CpG substitutions”, are a major mutational input into vertebrate genomes and a leading cause of human genetic disease. The prevalence of CpG substitutions is due to their mutational origin, which is dependent on DNA methylation. In comparison, other single nucleotide substitutions (for example those occurring at GpC dinucleotides) mainly arise from errors during DNA replication. Here we analyzed high quality BAC-based data from human, chimpanzee, and baboon to investigate regional variation of CpG substitution rates

    Pain, psychological distress and health-related quality of life at baseline and 3 months after radical prostatectomy

    Get PDF
    BACKGROUND: Inadequate management of postoperative pain is common, and postoperative pain is a risk factor for prolonged pain. In addition to medical and technical factors, psychological factors may also influence the experience of postoperative pain. METHODS: Pain was measured postoperatively at 24, 48, and 72 hr in hospital and after 3 months at home in 140 patients undergoing radical prostatectomy (RP). Patients answered questionnaires about anxiety and depression (HAD scale) and health-related quality of life (SF-36) at baseline and 3 months after surgery. RESULTS: In the first 3 postoperative days, mild pain was reported by 45 patients (32%), moderate pain by 64 (45%), and severe pain by 31 (22%) on one or more days. High postoperative pain scores were correlated with length of hospital stay and with high pain scores at home. Forty patients (29%) reported moderate (n = 35) or severe (n = 5) pain after discharge from hospital. Patients who experienced anxiety and depression preoperatively had higher postoperative pain scores and remained anxious and depressed 3 months after surgery. The scores for the physical domains in the SF-36 were decreased, while the mental health scores were increased at 3 months. Anxiety and depression were negatively correlated with all domains of the SF-36. CONCLUSION: There is a need for nurses to be aware of the psychological status of RP patients and its impact upon patients' experience of postoperative pain and recovery. The ability to identify patients with psychological distress and to target interventions is an important goal for future research

    Statistical method on nonrandom clustering with application to somatic mutations in cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human cancer is caused by the accumulation of tumor-specific mutations in oncogenes and tumor suppressors that confer a selective growth advantage to cells. As a consequence of genomic instability and high levels of proliferation, many passenger mutations that do not contribute to the cancer phenotype arise alongside mutations that drive oncogenesis. While several approaches have been developed to separate driver mutations from passengers, few approaches can specifically identify activating driver mutations in oncogenes, which are more amenable for pharmacological intervention.</p> <p>Results</p> <p>We propose a new statistical method for detecting activating mutations in cancer by identifying nonrandom clusters of amino acid mutations in protein sequences. A probability model is derived using order statistics assuming that the location of amino acid mutations on a protein follows a uniform distribution. Our statistical measure is the differences between pair-wise order statistics, which is equivalent to the size of an amino acid mutation cluster, and the probabilities are derived from exact and approximate distributions of the statistical measure. Using data in the Catalog of Somatic Mutations in Cancer (COSMIC) database, we have demonstrated that our method detects well-known clusters of activating mutations in KRAS, BRAF, PI3K, and <it>β</it>-catenin. The method can also identify new cancer targets as well as gain-of-function mutations in tumor suppressors.</p> <p>Conclusions</p> <p>Our proposed method is useful to discover activating driver mutations in cancer by identifying nonrandom clusters of somatic amino acid mutations in protein sequences.</p

    Sensitivity of methods for estimating breeding values using genetic markers to the number of QTL and distribution of QTL variance

    Get PDF
    The objective of this simulation study was to compare the effect of the number of QTL and distribution of QTL variance on the accuracy of breeding values estimated with genomewide markers (MEBV). Three distinct methods were used to calculate MEBV: a Bayesian Method (BM), Least Angle Regression (LARS) and Partial Least Square Regression (PLSR). The accuracy of MEBV calculated with BM and LARS decreased when the number of simulated QTL increased. The accuracy decreased more when QTL had different variance values than when all QTL had an equal variance. The accuracy of MEBV calculated with PLSR was affected neither by the number of QTL nor by the distribution of QTL variance. Additional simulations and analyses showed that these conclusions were not affected by the number of individuals in the training population, by the number of markers and by the heritability of the trait. Results of this study show that the effect of the number of QTL and distribution of QTL variance on the accuracy of MEBV depends on the method that is used to calculate MEBV

    High-resolution haplotype block structure in the cattle genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Bovine HapMap Consortium has generated assay panels to genotype ~30,000 single nucleotide polymorphisms (SNPs) from 501 animals sampled from 19 worldwide taurine and indicine breeds, plus two outgroup species (Anoa and Water Buffalo). Within the larger set of SNPs we targeted 101 high density regions spanning up to 7.6 Mb with an average density of approximately one SNP per 4 kb, and characterized the linkage disequilibrium (LD) and haplotype block structure within individual breeds and groups of breeds in relation to their geographic origin and use.</p> <p>Results</p> <p>From the 101 targeted high-density regions on bovine chromosomes 6, 14, and 25, between 57 and 95% of the SNPs were informative in the individual breeds. The regions of high LD extend up to ~100 kb and the size of haplotype blocks ranges between 30 bases and 75 kb (10.3 kb average). On the scale from 1–100 kb the extent of LD and haplotype block structure in cattle has high similarity to humans. The estimation of effective population sizes over the previous 10,000 generations conforms to two main events in cattle history: the initiation of cattle domestication (~12,000 years ago), and the intensification of population isolation and current population bottleneck that breeds have experienced worldwide within the last ~700 years. Haplotype block density correlation, block boundary discordances, and haplotype sharing analyses were consistent in revealing unexpected similarities between some beef and dairy breeds, making them non-differentiable. Clustering techniques permitted grouping of breeds into different clades given their similarities and dissimilarities in genetic structure.</p> <p>Conclusion</p> <p>This work presents the first high-resolution analysis of haplotype block structure in worldwide cattle samples. Several novel results were obtained. First, cattle and human share a high similarity in LD and haplotype block structure on the scale of 1–100 kb. Second, unexpected similarities in haplotype block structure between dairy and beef breeds make them non-differentiable. Finally, our findings suggest that ~30,000 uniformly distributed SNPs would be necessary to construct a complete genome LD map in <it>Bos taurus </it>breeds, and ~580,000 SNPs would be necessary to characterize the haplotype block structure across the complete cattle genome.</p

    Autonomic and muscular responses and recovery to one-hour laboratory mental stress in healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stress is a risk factor for musculoskeletal pain. We wanted to explore stress related physiology in healthy subjects in order to gain insight into mechanisms of pain development which may relate to the pathophysiology of musculoskeletal pain disorders.</p> <p>Methods</p> <p>Continuous blood pressure, heart rate, finger skin blood flow, respiration, surface electromyography together with perception of pain, fatigue and tension were recorded on 35 healthy women and 9 healthy men before, during a 60 minute period with task-related low-grade mental stress, and in the following 30 minute rest period.</p> <p>Results</p> <p>Subjects responded physiologically to the stressful task with an increase in trapezius and frontalis muscle activity, increased blood pressure, respiration frequency and heart rate together with reduced finger skin blood flow. The blood pressure response and the finger skin blood flow response did not recover to baseline values during the 30-minute rest period, whereas respiration frequency, heart rate, and surface electromyography of the trapezius and frontalis muscles recovered to baseline within 10 minutes after the stressful task. Sixty-eight percent responded subjectively with pain development and 64% reported at least 30% increase in pain. Reduced recovery of the blood pressure was weakly correlated to fatigue development during stress, but was not correlated to pain or tension.</p> <p>Conclusion</p> <p>Based on a lack of recovery of the blood pressure and the acral finger skin blood flow response to mental stress we conclude that these responses are more protracted than other physiological stress responses.</p

    A study of genetic polymorphisms of milk β-lactoglobulin, α S1 -casein, β-casein, and κ-casein in five dairy breeds

    Full text link
    Gene frequencies of the milk β-lactoglobulin, α S1 -casein, β-casein, and κ-casein loci have been estimated from 1663 cows of five dairy breeds. Departure from Hardy-Weinberg equilibrium was found only in the κ-casein system in Jerseys. However, chance alone could have accounted for this single significant finding. Results of pairwise comparisons among the five breeds of allele frequencies at these milk protein loci indicate that of the 40 possible tests, only six comparisons are not significant at the 5% probability level. It would appear that these breeds are characterizable in terms of the gene frequencies of these milk protein loci. Nonindependent assortment of genotypes among these milk protein loci was also studied. The closely linked casein loci were not independent in almost all the breeds where tests could be carried out. The only exception was between the α S1 -casein and κ-casein loci in Holsteins. β-Lactoglobulin was independent of the casein loci in all breeds except Brown Swiss, where it was found to be significantly associated with κ-casein. Close linkage is proposed as an important factor for maintaining the observed milk protein polymorphisms.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44176/1/10528_2004_Article_BF00485960.pd
    corecore