251 research outputs found
Sirtuin1 and autophagy protect cells from fluoride-induced cell stress
AbstractSirtuin1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase functioning in the regulation of metabolism, cell survival and organismal lifespan. Active SIRT1 regulates autophagy during cell stress, including calorie restriction, endoplasmic reticulum (ER) stress and oxidative stress. Previously, we reported that fluoride induces ER-stress in ameloblasts responsible for enamel formation, suggesting that ER-stress plays a role in dental fluorosis. However, the molecular mechanism of how cells respond to fluoride-induced cell stress is unclear. Here, we demonstrate that fluoride activates SIRT1 and initiates autophagy to protect cells from fluoride exposure. Fluoride treatment of ameloblast-derived cells (LS8) significantly increased Sirt1 expression and induced SIRT1 phosphorylation resulting in the augmentation of SIRT1 deacetylase activity. To demonstrate that fluoride exposure initiates autophagy, we characterized the expression of autophagy related genes (Atg); Atg5, Atg7 and Atg8/LC3 and showed that both their transcript and protein levels were significantly increased following fluoride treatment. To confirm that SIRT1 plays a protective role in fluoride toxicity, we used resveratrol (RES) to augment SIRT1 activity in fluoride treated LS8 cells. RES increased autophagy, inhibited apoptosis, and decreased fluoride cytotoxicity. Rats treated with fluoride (0, 50, 100 and 125ppm) in drinking water for 6weeks had significantly elevated expression levels of Sirt1, Atg5, Atg7 and Atg8/LC3 in their maturation stage enamel organs. Increased protein levels of p-SIRT1, ATG5 and ATG8/LC3 were present in fluoride-treated rat maturation stage ameloblasts. Therefore, the SIRT1/autophagy pathway may play a critical role as a protective response to help prevent dental fluorosis
Experience with the Vibrant Soundbridge RW-Coupler for round window Vibroplasty with tympanosclerosis
Usage of the Vibrant Soundbridge (VSB) with round window (RW)-Coupler placement at the RW has been shown to successfully treat mixed hearing loss. Coupling between the VSB's floating mass transducer (FMT) and the RW membrane is difficult in the case of sclerosis in the RW and drilling down the bony lip until the RW membrane can be seen completely can possibly induce a perilymphatic fistula. A 68-year-old woman who had bilateral mixed hearing loss with sclerosis in the RW due to tympanosclerosis underwent a RW-Vibroplasty with a RW-Coupler. Speech discrimination scores in quiet and noise and functional gain with the VSB with RW-Coupler were better than those using a conventional hearing aid. The results of the present case have shown the feasibility of implanting a VSB with RW-Coupler in patients with mixed hearing loss due to tympanosclerosis.ArticleACTA OTO-LARYNGOLOGICA. 132(6):676-682 (2012)journal articl
Perfluorooctanoic acid-induced cell death via the dual roles of ROS-MAPK/ERK signaling in ameloblast-lineage cells
Perfluorooctanoic acid (PFOA) is an artificial fluorinated organic compound that has generated increased public attention due to its potential health hazards. Unsafe levels of PFOA exposure can affect reproduction, growth and development. During tooth enamel development (amelogenesis), environmental factors including fluoride can cause enamel hypoplasia. However, the effects of PFOA on ameloblasts and tooth enamel formation remain largely unknown. In the present study we demonstrate several PFOA-mediated cell death pathways (necrosis/necroptosis, and apoptosis) and assess the roles of ROS-MAPK/ERK signaling in PFOA-mediated cell death in mouse ameloblast-lineage cells (ALC).
ALC cells were treated with PFOA. Cell proliferation and viability were analyzed by MTT assays and colony formation assays, respectively. PFOA suppressed cell proliferation and viability in a dose dependent manner. PFOA induced both necrosis (PI-positive cells) and apoptosis (cleaved-caspase-3, γH2AX and TUNEL-positive cells). PFOA significantly increased ROS production and up-regulated phosphor-(p)-ERK. Addition of ROS inhibitor N-acetyl cysteine (NAC) suppressed p-ERK and decreased necrosis, and increased cell viability compared to PFOA alone, whereas NAC did not change apoptosis. This suggests that PFOA-mediated necrosis was induced by ROS-MAPK/ERK signaling, but apoptosis was not associated with ROS. Addition of MAPK/ERK inhibitor PD98059 suppressed necrosis and increased cell viability compared to PFOA alone. Intriguingly, PD98059 augmented PFOA-mediated apoptosis. This suggests that p-ERK promoted necrosis but suppressed apoptosis. Addition of the necroptosis inhibitor Necrostatin-1 restored cell viability compared to PFOA alone, while pan-caspase inhibitor Z-VAD did not mitigate PFOA-mediated cell death. These results suggest that 1) PFOA-mediated cell death was mainly caused by necrosis/necroptosis by ROS-MAPK/ERK signaling rather than apoptosis, 2) MAPK/ERK signaling plays the dual roles (promoting necrosis and suppressing apoptosis) under PFOA treatment. This is the initial report to indicate that PFOA could be considered as a possible causative factor for cryptogenic enamel malformation. Further studies are required to elucidate the mechanisms of PFOA-mediated adverse effects on amelogenesis
Patients with CDH23 mutations and the 1555A > G mitochondrial mutation are good candidates for electric acoustic stimulation (EAS)
Conclusions: CDH23 mutations and the 1555A>G mitochondrial mutation were identified among our series of electric acoustic stimulation (EAS) patients, confirming that these genes were important in hearing loss with involvement of high frequency. Successful hearing preservation as well as good outcomes from EAS indicated that patients with this combination of mutations are good candidates for EAS. Objectives: Screening for gene mutations that possibly cause hearing loss involving high frequency was performed to identify the responsible genes in patients with EAS. In addition to a review of the genetic background of the patients with residual hearing loss, the benefit of EAS for patients with particular gene mutations was evaluated. Methods: Eighteen patients (15 late-onset, 3 early-onset) with residual hearing who had received EAS were included in this study. Genetic analysis was performed to identify GJB2, CDH23, SLC26A4, and the 1555 mitochondrial mutations. Results: Three early-onset patients had CDH23 mutations. One late-onset patient had the 1555 A>G mitochondrial mutation.ArticleACTA OTO-LARYNGOLOGICA. 132(4):377-384 (2012)journal articl
Synergistic effects of arginine and fluoride on human dental biofilm control
Kuriki N., Asahi Y., Okamoto M., et al. Synergistic effects of arginine and fluoride on human dental biofilm control. Journal of Dentistry 149, 105307 (2024); https://doi.org/10.1016/j.jdent.2024.105307.Objectives: The aim of this study was to quantitatively and comprehensively investigate the combined effects of arginine and fluoride on the suppression of pathogenicity using an in situ biofilm model and next-generation sequencing (NGS). Methods: Using the in situ model, dental biofilms were formed and the viable bacterial counts and arginine activity in the arginine- and fluoride-containing dentifrice and control groups were measured. We also compared their effects on the bacterial microbiota and predictive functional factors in the control, arginine (arg), and arginine + fluoride (argF) groups using NGS analysis. Results: Compared to the control treatment, the use of 8 % arginine and 1450 ppm fluoride toothpaste resulted in significantly high oral NH4+ concentrations without affecting the number of viable bacteria (P < 0.05). NGS analysis revealed that the oral microbiota of the control, arg, and argF groups were significantly different. Heat map analysis of the predicted functional factors revealed that the arg group had different properties from the other groups and activated specific substrate metabolic pathways; contrastingly, argF treatment inhibited the activity of these pathways and prevented an increase in the abundance of bacterial genera that utilize substrates such as sucrose, suggesting the synergistic effect of arginine and fluoride. Conclusions: This study indicates that the combination of arginine and fluoride has a synergistic effect on the bacterial microbiota and pathogenicity of dental biofilms compared with arginine alone. Clinical significance: Our findings suggest that the combination of arginine and fluoride could be used as an effective prebiotic and may inhibit the growth of bacteria associated with dental diseases
Achievement of hearing preservation in the presence of an electrode covering the residual hearing region
Conclusions: With full insertion with a long electrode, hearing preservation can be achieved even in the presence of a long electrode covering the residual hearing region. Objectives: Advances in developing new atraumatic concepts of electrode design as well as surgical technique have enabled hearing preservation after cochlear implantation surgery, and EAS (electric acoustic stimulation) accompanied with hearing preservation is a new trend for patients with residual hearing at the lower frequencies. However, full insertion with a long/medium electrode and hearing preservation is still a challenging field that calls for discussion. Method: In this study, round window insertion, an atraumatic electrode, and dexamethasone administration were used and atraumaticity (hearing preservation and conservation of vestibular function) was evaluated with full insertion of the electrode. Results: Postoperative evaluation after full insertion of the electrodes showed that hearing at low frequencies was well preserved in all five cases. Combined postoperative imaging with the referential tonotopic map confirmed achievement of full insertion and indicated the corresponding frequencies and the depth of the electrode. Achievement of atraumaticity of round window insertion in the present cases was confirmed from the viewpoint of the minimal drilling time as well as the preserved vestibular function.ArticleACTA OTO-LARYNGOLOGICA. 131(4):405-412 (2011)journal articl
A Case of Necrotizing Sialometaplasia of the Hard Palate Treated with Tranexamic Acid and Sodium Azulene Sulfonate
Necrotizing sialometaplasia is a benign lesion affecting the minor salivary glands of the hard palate. This lesion may be clinically and histopathologically confused with malignant lesions. A case of a 47-year-old man who presented with necrotizing sialometaplasia on the left side of the hard palate is herein reported. A biopsy was performed, and the condition was diagnosed based on immunohistochemistry. The lesion receded following treatment with tranexamic acid and sodium azulene sulfonate. The symptom of painful swelling on the hard palate subsided within 10 days. The palatal lesion had disappeared completely 4 months later
- …