7 research outputs found

    Eliminating HIV-1 Packaging Sequences from Lentiviral Vector Proviruses Enhances Safety and Expedites Gene Transfer for Gene Therapy

    Get PDF
    Lentiviral vector genomic RNA requires sequences that partially overlap wild-type HIV-1 gag and env genes for packaging into vector particles. These HIV-1 packaging sequences constitute 19.6% of the wild-type HIV-1 genome and contain functional cis elements that potentially compromise clinical safety. Here, we describe the development of a novel lentiviral vector (LTR1) with a unique genomic structure designed to prevent transfer of HIV-1 packaging sequences to patient cells, thus reducing the total HIV-1 content to just 4.8% of the wildtype genome. This has been achieved by reconfiguring the vector to mediate reverse-transcription with a single strand transfer, instead of the usual two, and in which HIV-1 packaging sequences are not copied. We show that LTR1 vectors offer improved safety in their resistance to remobilization in HIV-1 particles and reduced frequency of splicing into human genes. Following intravenous luciferase vector administration to neonatal mice, LTR1 sustained a higher level of liver transgene expression than an equivalent dose of a standard lentivirus. LTR1 vectors produce reverse-transcription products earlier and start to express transgenes significantly quicker than standard lentiviruses after transduction. Finally, we show that LTR1 is an effective lentiviral gene therapy vector as demonstrated by correction of a mouse hemophilia B model

    A comparison of intrauterine haemopoietic cell transplantation and lentiviral gene transfer for the correction of severe β-thalassaemia in a HbbTh3/+ murine model

    Get PDF
    Major haemoglobinopathies place tremendous strain on global resources. Intrauterine haemopoietic cell (IUHCT) and gene (IUGT) therapies can potentially reduce perinatal morbidities with greater efficacy than postnatal therapy alone. We performed both procedures in the thalassaemic HbbTh3/+ murine model. Intraperitoneal delivery of coisogenic cells at E13-14 produced dose-dependent chimerism. High-dose adult bone marrow (BM) cells maintained 0.2-3.1% chimerism over ~24 weeks and treated heterozygotes demonstrated higher chimerism than wild-type pups (1.6 vs. 0.7%). Fetal liver cells produced higher chimerism compared to adult BM when transplanted at the same doses, maintaining 1.8-2.4% chimerism over ~32 weeks. We boosted transplanted mice postnatally with adult BM cells following busulfan conditioning. Engraftment was maintained at >1% only in recipients which were chimeric prior to boosting. IUHCT-treated non-chimeras and non-IUHCT mice showed micro- or no chimerism. Additional fludarabine treatment produced higher chimerism than busulfan alone. Engraftment was more effective following higher starting chimerism prior to boosting and in heterozygotes. Chimeric heterozygotes expressed 2.2-15.1% donor cells with eventual decline at 24 weeks (vs. <1% in non-chimeras) and demonstrated improved haematological indices and smaller spleens compared to untreated heterozygotes. Intravenous delivery of GLOBE lentiviral-vector expressing HBB (human β-globin) resulted in vector concentration of 0.001-0.6 copies/cell. Most haematological indices were higher in treated than untreated heterozygotes including haemoglobin and mean corpuscular volume, though still lower than in wild-types. Thus both direct IUGT and IUHCT strategies can be used to achieve haematological improvement but require further dose optimisation. IUHCT will be useful combined with postnatal transplantation to further enhance engraftment

    In utero gene transfer to the mouse nervous system

    No full text
    The cellular and molecular environment present in the fetus and early newborn provides an excellent opportunity for effective gene transfer Innate and pre existing anti vector immunity may be attenuated or absent and the adaptive immune system predisposed to tolerance towards xenoproteins Stem cell and progenitor ell populations are abundant active and accessible In addition for treatment of early lethal genetic diseases of the nervous system the overarching advantage may be that early gene supplementation prevents the onset of irreversible pathological changes Gene transfer to the fetal mouse nervous system was achieved albeit inefficiently as far back as the mid 1980s Recently improvements in vector design and production have culminated in near complete correction of a mouse model of spinal muscular atrophy In the present art! le we review perinatal gene transfer from both a therapeutic and technological perspectiv

    Adenovirus serotype 5 hexon mediates liver gene transfer

    Get PDF
    Adenoviruses are used extensively as gene transfer agents, both experimentally and clinically. However, targeting of liver cells by adenoviruses compromises their potential efficacy. In cell culture, the adenovirus serotype 5 fiber protein engages the coxsackievirus and adenovirus receptor (CAR) to bind cells. Paradoxically, following intravascular delivery, CAR is not used for liver transduction, implicating alternate pathways. Recently, we demonstrated that coagulation factor (F)X directly binds adenovirus leading to liver infection. Here, we show that FX binds to the Ad5 hexon, not fiber, via an interaction between the FX Gla domain and hypervariable regions of the hexon surface. Binding occurs in multiple human adenovirus serotypes. Liver infection by the FX-Ad5 complex is mediated through a heparin-binding exosite in the FX serine protease domain. This study reveals an unanticipated function for hexon in mediating liver gene transfer in vivo
    corecore