17 research outputs found

    Analysis of counts for cluster randomized trials: Negative controls and test-negative designs.

    Get PDF
    In cluster randomized trials (CRTs), the outcome of interest is often a count at the cluster level. This occurs, for example, in evaluating an intervention with the outcome being the number of infections of a disease such as HIV or dengue or the number of hospitalizations in the cluster. Standard practice analyzes these counts through cluster outcome rates using an appropriate denominator (eg, population size). However, such denominators are sometimes unknown, particularly when the counts depend on a passive community surveillance system. We consider direct comparison of the counts without knowledge of denominators, relying on randomization to balance denominators. We also focus on permutation tests to allow for small numbers of randomized clusters. However, such approaches are subject to bias when there is differential ascertainment of counts across arms, a situation that may occur in CRTs that cannot implement blinded interventions. We suggest the use of negative control counts as a method to remove, or reduce, this bias, discussing the key properties necessary for an effective negative control. A current example of such a design is the recent extension of test-negative designs to CRTs testing community-level interventions. Via simulation, we compare the performance of new and standard estimators based on CRTs with negative controls to approaches that only use the original counts. When there is no differential ascertainment by intervention arm, the count-only approaches perform comparably to those using debiasing negative controls. However, under even modest differential ascertainment, the count-only estimators are no longer reliable

    A Flexible Multi-Metric Bayesian Framework for Decision-Making in Phase II Multi-Arm Multi-Stage Studies

    Full text link
    We propose a multi-metric flexible Bayesian framework to support efficient interim decision-making in multi-arm multi-stage phase II clinical trials. Multi-arm multi-stage phase II studies increase the efficiency of drug development, but early decisions regarding the futility or desirability of a given arm carry considerable risk since sample sizes are often low and follow-up periods may be short. Further, since intermediate outcomes based on biomarkers of treatment response are rarely perfect surrogates for the primary outcome and different trial stakeholders may have different levels of risk tolerance, a single hypothesis test is insufficient for comprehensively summarizing the state of the collected evidence. We present a Bayesian framework comprised of multiple metrics based on point estimates, uncertainty, and evidence towards desired thresholds (a Target Product Profile, TPP) for 1) ranking of arms and 2) comparison of each arm against an internal control. Using a large public-private partnership targeting novel TB arms as a motivating example, we find via simulation study that our multi-metric framework provides sufficient confidence for decision-making with sample sizes as low as 30 patients per arm, even when intermediate outcomes have only moderate correlation with the primary outcome. Our reframing of trial design and the decision-making procedure has been well-received by research partners and is a practical approach to more efficient assessment of novel therapeutics.Comment: 16 pages, 6 main text figures, 3 supplemental figure

    Disruption of spatiotemporal clustering in dengue cases by wMel Wolbachia in Yogyakarta, Indonesia.

    Get PDF
    Dengue exhibits focal clustering in households and neighborhoods, driven by local mosquito population dynamics, human population immunity, and fine scale human and mosquito movement. We tested the hypothesis that spatiotemporal clustering of homotypic dengue cases is disrupted by introduction of the arbovirus-blocking bacterium Wolbachia (wMel-strain) into the Aedes aegypti mosquito population. We analysed 318 serotyped and geolocated dengue cases (and 5921 test-negative controls) from a randomized controlled trial in Yogyakarta, Indonesia of wMel deployments. We find evidence of spatial clustering up to 300 m among the 265 dengue cases (3083 controls) in the untreated trial arm. Participant pairs enrolled within 30 days and 50 m had a 4.7-fold increase (compared to 95% CI on permutation-based null distribution: 0.1, 1.2) in the odds of being homotypic (i.e. potentially transmission-related) as compared to pairs occurring at any distance. In contrast, we find no evidence of spatiotemporal clustering among the 53 dengue cases (2838 controls) resident in the wMel-treated arm. Introgression of wMel Wolbachia into Aedes aegypti mosquito populations interrupts focal dengue virus transmission leading to reduced case incidence; the true intervention effect may be greater than the 77% efficacy measured in the primary analysis of the Yogyakarta trial

    Update to the AWED (Applying Wolbachia to Eliminate Dengue) trial study protocol: a cluster randomised controlled trial in Yogyakarta, Indonesia.

    Get PDF
    BACKGROUND: The AWED (Applying Wolbachia to Eliminate Dengue) trial is a parallel, two-arm, non-blinded cluster randomised controlled trial that is under way in Yogyakarta, Indonesia, with the aim of measuring the efficacy of Wolbachia-infected Aedes aegypti deployments in reducing dengue incidence in an endemic setting. Enrolment began in January 2018 and is ongoing. The original study protocol was published in April 2018. Here, we describe amendments that have been made to the study protocol since commencement of the trial. METHODS: The key protocol amendments are (1) a revised study duration with planned end of participant enrolment in August 2020, (2) the addition of new secondary objectives (i) to estimate serotype-specific efficacy of the Wolbachia intervention and (ii) to compare Ae. aegypti abundance in intervention versus untreated clusters, (3) an additional exposure classification for the per-protocol analysis where the Wolbachia exposure index is calculated using only the cluster-level Wolbachia prevalence in the participant's cluster of residence, (4) power re-estimation using a multinomial sampling method that better accounts for randomness in sampling, and (5) the addition of two trial stopping rules to address the potential for persistently low rates of virologically confirmed dengue case enrolment and Wolbachia contamination into untreated clusters. Additional minor changes to the protocol are also described. DISCUSSION: The findings from this study will provide the first experimental evidence for the efficacy of Wolbachia in reducing dengue incidence. Enrolment in the trial will conclude this year (2020) and results will be reported shortly thereafter. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT03055585. Registered on 14 February 2017. Last updated 22 March 2020

    The impact of large-scale deployment of Wolbachia mosquitoes on dengue and other Aedes-borne diseases in Rio de Janeiro and Niterói, Brazil: study protocol for a controlled interrupted time series analysis using routine disease surveillance data.

    Get PDF
    Background: Rio de Janeiro and Niterói are neighbouring cities in southeastern Brazil which experience large dengue epidemics every 2 to 5 years, with >100,000 cases notified in epidemic years. Costs of vector control and direct and indirect costs due to the Aedes-borne diseases dengue, chikungunya and Zika were estimated to total $650 million USD in 2016, but traditional vector control strategies have not been effective in preventing mosquito-borne disease outbreaks. The Wolbachia method is a novel and self-sustaining approach for the biological control of Aedes-borne diseases, in which the transmission potential of Aedes aegypti mosquitoes is reduced by stably transfecting them with the Wolbachia bacterium ( wMel strain). This paper describes a study protocol for evaluating the effect of large-scale non-randomised releases of Wolbachia--infected mosquitoes on the incidence of dengue, Zika and chikungunya in the two cities of Niterói and Rio de Janeiro. This follows a lead-in period since 2014 involving intensive community engagement, regulatory and public approval, entomological surveys, and small-scale pilot releases. Method: The Wolbachia releases during 2017-2019 covered a combined area of 170 km 2 with a resident population of 1.2 million, across Niterói and Rio de Janeiro. Untreated areas with comparable historical dengue profiles and demographic characteristics have been identified a priori as comparative control areas in each city. The proposed pragmatic epidemiological approach combines a controlled interrupted time series analysis of routinely notified suspected and laboratory-confirmed dengue and chikungunya cases, together with monitoring of Aedes-borne disease activity utilising outbreak signals routinely used in public health disease surveillance. Discussion: If the current project is successful, this model for control of mosquito-borne disease through Wolbachia releases can be expanded nationally and regionally

    The impact of city-wide deployment of Wolbachia-carrying mosquitoes on arboviral disease incidence in Medellín and Bello, Colombia: study protocol for an interrupted time-series analysis and a test-negative design study.

    Get PDF
    Background: Dengue, chikungunya and Zika are viral infections transmitted by Aedes aegypti mosquitoes, and present major public health challenges in tropical regions. Traditional vector control methods have been ineffective at halting disease transmission. The World Mosquito Program has developed a novel approach to arbovirus control using Ae. aegypti stably transfected with the Wolbachia bacterium, which have significantly reduced ability to transmit dengue, Zika and chikungunya in laboratory experiments. Field releases in eight countries have demonstrated Wolbachia establishment in local Ae. aegypti populations. Methods: We describe a pragmatic approach to measuring the epidemiological impact of city-wide Wolbachia deployments in Bello and Medellín, Colombia. First, an interrupted time-series analysis will compare the incidence of dengue, chikungunya and Zika case notifications before and after Wolbachia releases, across the two municipalities. Second, a prospective case-control study using a test-negative design will be conducted in one quadrant of Medellín. Three of the six contiguous release zones in the case-control area were allocated to receive the first Wolbachia deployments in the city and three to be treated last, approximating a parallel two-arm trial for the >12-month period during which Wolbachia exposure remains discordant. Allocation, although non-random, aimed to maximise balance between arms in historical dengue incidence and demographics. Arboviral disease cases and arbovirus-negative controls will be enrolled concurrently from febrile patients presenting to primary care, with case/control status classified retrospectively following laboratory diagnostic testing. Intervention effect is estimated from an aggregate odds ratio comparing Wolbachia-exposure odds among test-positive cases versus test-negative controls. Discussion: The study findings will add to an accumulating body of evidence from global field sites on the efficacy of the Wolbachia method in reducing arboviral disease incidence, and can inform decisions on wider public health implementation of this intervention in the Americas and beyond. Trial registration: ClinicalTrials.gov: NCT03631719. Registered on 15 August 2018

    Efficacy of Wolbachia-Infected Mosquito Deployments for the Control of Dengue.

    Get PDF
    BACKGROUND: Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia pipientis are less susceptible than wild-type A. aegypti to dengue virus infection. METHODS: We conducted a cluster-randomized trial involving releases of wMel-infected A. aegypti mosquitoes for the control of dengue in Yogyakarta, Indonesia. We randomly assigned 12 geographic clusters to receive deployments of wMel-infected A. aegypti (intervention clusters) and 12 clusters to receive no deployments (control clusters). All clusters practiced local mosquito-control measures as usual. A test-negative design was used to assess the efficacy of the intervention. Patients with acute undifferentiated fever who presented to local primary care clinics and were 3 to 45 years of age were recruited. Laboratory testing was used to identify participants who had virologically confirmed dengue (VCD) and those who were test-negative controls. The primary end point was symptomatic VCD of any severity caused by any dengue virus serotype. RESULTS: After successful introgression of wMel into the intervention clusters, 8144 participants were enrolled; 3721 lived in intervention clusters, and 4423 lived in control clusters. In the intention-to-treat analysis, VCD occurred in 67 of 2905 participants (2.3%) in the intervention clusters and in 318 of 3401 (9.4%) in the control clusters (aggregate odds ratio for VCD, 0.23; 95% confidence interval [CI], 0.15 to 0.35; P = 0.004). The protective efficacy of the intervention was 77.1% (95% CI, 65.3 to 84.9) and was similar against the four dengue virus serotypes. The incidence of hospitalization for VCD was lower among participants who lived in intervention clusters (13 of 2905 participants [0.4%]) than among those who lived in control clusters (102 of 3401 [3.0%]) (protective efficacy, 86.2%; 95% CI, 66.2 to 94.3). CONCLUSIONS: Introgression of wMel into A. aegypti populations was effective in reducing the incidence of symptomatic dengue and resulted in fewer hospitalizations for dengue among the participants. (Funded by the Tahija Foundation and others; AWED ClinicalTrials.gov number, NCT03055585; Indonesia Registry number, INA-A7OB6TW.)

    The Analysis of Cluster-Randomized Test-Negative Designs: Eliminating Dengue

    No full text
    According to the World Health Organization, dengue is the most critical and most rapidly spreading mosquito-borne viral disease in the world and is responsible for the infection of an estimated 380 million people across the globe annually. There is no cure for dengue, makingprevention key to disrupting the rapid progression of this disease into the world's population.Recent scientific advances target the mosquito's ability to carry and transmit viral diseases. The method motivating this research injects a safe, naturally occurring bacterium called Wolbachia into the mosquito population responsible for the spread of dengue and other arboviruses including Zika, chikungunya, and yellow fever. When successfully introduced into the mosquito population, Wolbachia prevents these viruses from replicating, which reduces the potential of transmission to humans.This dissertation addresses the statistical evaluation of the impact of studies of such mosquito-based interventions. Collecting reliable evidence for mosquito-borne interventions is often expensive and logistically prohibitive. The Cluster Randomized Test-Negative Designdiscussed in this thesis addresses many of the barriers to such vital research. In this trial setting and several variations, I propose and evaluate estimators of intervention impact. These results can be used to better inform policies and protect vulnerable populations

    Modernization of Endpoints and Estimands of Late-phase Tuberculosis Therapeutic Trials

    No full text
    The overall objective of this project is to improve the specification and, to the extent possible, the standardization of endpoint and estimand definitions across protocols, analysis plans and reports from late phase pulmonary TB therapeutic trials. To this end, we are using the estimand framework, as outlined by the ICH E9(R1) addendum, since it contains recommendations that are binding for trials conducted under ICH GCP. *Please feel free to send comments or suggestions as this estimands report is a living document that will continue to be updated.
    corecore