28 research outputs found

    Semaphorin-6A controls guidance of corticospinal tract axons at multiple choice points

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The trajectory of corticospinal tract (CST) axons from cortex to spinal cord involves a succession of choice points, each of which is controlled by multiple guidance molecules. To assess the involvement of transmembrane semaphorins and their plexin receptors in the guidance of CST axons, we have examined this tract in mutants of <it>Semaphorin-6A </it>(<it>Sema6A</it>), <it>Plexin-A2 </it>(<it>PlxnA2</it>) and <it>Plexin-A4 </it>(<it>PlxnA4</it>).</p> <p>Results</p> <p>We describe defects in CST guidance in <it>Sema6A </it>mutants at choice points at the mid-hindbrain boundary (MHB) and in navigation through the pons that dramatically affect how many axons arrive to the hindbrain and spinal cord and result in hypoplasia of the CST. We also observe defects in guidance within the hindbrain where a proportion of axons aberrantly adopt a ventrolateral position and fail to decussate. This function in the hindbrain seems to be mediated by the known Sema6A receptor PlxnA4, which is expressed by CST axons. Guidance at the MHB, however, appears independent of this and of the other known receptor, PlxnA2, and may depend instead on Sema6A expression on CST axons themselves at embryonic stages.</p> <p>Conclusion</p> <p>These data identify Sema6A as a major contributor to the guidance of CST axons at multiple choice points. They highlight the active control of guidance at the MHB and also implicate the inferior olive as an important structure in the guidance of CST axons within the hindbrain. They also suggest that Sema6A, which is strongly expressed by oligodendrocytes, may affect CST regeneration in adults.</p

    Proteome dynamics during postnatal mouse corpus callosum development.

    Get PDF
    Formation of cortical connections requires the precise coordination of numerous discrete phases. This is particularly significant with regard to the corpus callosum, whose development undergoes several dynamic stages including the crossing of axon projections, elimination of exuberant projections, and myelination of established tracts. To comprehensively characterize the molecular events in this dynamic process, we set to determine the distinct temporal expression of proteins regulating the formation of the corpus callosum and their respective developmental functions. Mass spectrometry-based proteomic profiling was performed on early postnatal mouse corpus callosi, for which limited evidence has been obtained previously, using stable isotope of labeled amino acids in mammals (SILAM). The analyzed corpus callosi had distinct proteomic profiles depending on age, indicating rapid progression of specific molecular events during this period. The proteomic profiles were then segregated into five separate clusters, each with distinct trajectories relevant to their intended developmental functions. Our analysis both confirms many previously-identified proteins in aspects of corpus callosum development, and identifies new candidates in understudied areas of development including callosal axon refinement. We present a valuable resource for identifying new proteins integral to corpus callosum development that will provide new insights into the development and diseases afflicting this structure

    Differential Proliferation Rhythm of Neural Progenitor and Oligodendrocyte Precursor Cells in the Young Adult Hippocampus

    Get PDF
    Oligodendrocyte precursor cells (OPCs) are a unique type of glial cells that function as oligodendrocyte progenitors while constantly proliferating in the normal condition from rodents to humans. However, the functional roles they play in the adult brain are largely unknown. In this study, we focus on the manner of OPC proliferation in the hippocampus of the young adult mice. Here we report that there are oscillatory dynamics in OPC proliferation that differ from neurogenesis in the subgranular zone (SGZ); the former showed S-phase and M-phase peaks in the resting and active periods, respectively, while the latter only exhibited M-phase peak in the active period. There is coincidence between different modes of proliferation and expression of cyclin proteins that are crucial for cell cycle; cyclin D1 is expressed in OPCs, while cyclin D2 is observed in neural stem cells. Similar to neurogenesis, the proliferation of hippocampal OPCs was enhanced by voluntary exercise that leads to an increase in neuronal activity in the hippocampus. These data suggest an intriguing control of OPC proliferation in the hippocampus

    Remarkable complexity and variability of corticospinal tract defects in adult Semaphorin 6A knockout mice

    Get PDF
    The corticospinal tract (CST) has a complex and long trajectory that originates in the cerebral cortex and ends in the spinal cord. Semaphorin 6A (Sema6A), a member of the semaphorin family, is an important regulator of CST axon guidance. Previous studies have shown that postnatal Sema6A mutant mice have CST defects at the midbrainā€“hindbrain boundary and medulla. However, the routes the aberrant fibers take throughout the Sema6A mutant brain remain unknown. In this study, we performed 3D reconstruction of immunostained CST fibers to reevaluate the details of the abnormal CST trajectories in the brains of adult Sema6A mutant mice. Our results showed that the axon guidance defects reported in early postnatal mutants were consistently observed in adulthood. Those abnormal trajectories revealed by 3D analysis of brain sections were, however, more complex and variable than previously thought. In addition, 3D analysis allowed us to identify a few new patterns of aberrant projections. First, a subset of fibers that separated from and descended in parallel to the main bundle projected laterally at the caudal pons, subsequently changed direction by turning caudally, and extended to the medulla. Second, some abnormal fibers returned to the correct trajectory after deviating substantially from the original tract. Third, some fibers reached the pyramidal decussation normally but did not enter the dorsal funiculus. Section immunostaining combined with 3D reconstruction is a powerful method to track long projection fibers and to examine the entire nerve tracts of both normal and abnormal animals

    Data for 3D reconstruction of the corticospinal tract in the wild-type and Semaphorin 6A knockout adult brain

    Get PDF
    The corticospinal tract (CST) has a complex and long trajectory throughout the brain. Semaphorin 6A (Sema6A), a member of the semaphorin family, is one of the important regulators of CST axon guidance. Previous studies have shown that Sema6A knockout (KO) mice have CST defects at the midbrainā€“hindbrain boundary and medulla [1]. However, the route of the aberrant fibers remained unknown. Therefore here, to track the trajectory of the abnormal fibers, 3D images of the CST in adult mice were reconstructed from serial brain sections stained with anti-PKCĪ³ antibody. Sema6A mutant brains showed CST defects that were more complex and variable than previously thought. In addition, 3D analysis helped us to identify a few new patterns of abnormal fibers.For more information about the data, please refer to an original research article, which has been recently published by Brain Research, ā€œRemarkable complexity and variability of corticospinal tract defects in adult Semaphorin 6A knockout miceā€ [2]

    Deletion of Sema3a or plexinA1/plexinA3 causes defects in sensory afferent projections of statoacoustic ganglion neurons.

    Get PDF
    Statoacoustic ganglion (SAG) neurons project sensory afferents to appropriate targets in the inner ear to form functional vestibular and auditory circuits. Neuropilin1 (Npn1), a receptor for class 3 semaphorins, is required to generate appropriate afferent projections in SAG neurons; however, the ligands and coreceptors involved in Npn1 functioning remain unknown. Here we show that both plexinA1 and plexinA3 are expressed by SAG neurons, and plexinA1/plexinA3 double mutant mice show defects in afferent projections of SAG neurons in the inner ear. In control mice, sensory afferents of SAG neurons terminate at the vestibular sensory patches, whereas in plexinA1/plexinA3 double mutants, they extend more dorsally in the inner ear beyond normal vestibular target areas. Moreover, we find that semaphorin3a (Sema3a) is expressed in the dorsal otocyst, and Sema3a mutant mice show defects in afferent projections of SAG neurons similar to those observed in plexinA1/plexinA3 double mutants and in mice lacking a functional Npn1 receptor. Taken together, these genetic findings demonstrate that Sema3a repellent signaling plays a role in the establishment of proper afferent projections in SAG neurons, and this signaling likely occurs through a receptor complex involving Npn1 and either plexinA1 or plexinA3

    Class 3 semaphorins negatively regulate dermal lymphatic network formation

    No full text
    The development of a patterned lymphatic vascular network is essential for proper lymphatic functions during organ development and homeostasis. Here we report that class 3 semaphorins (SEMA3s), SEMA3F and SEMA3G negatively regulate lymphatic endothelial cell (LEC) growth and sprouting to control dermal lymphatic network formation. Neuropilin2 (NRP2) functions as a receptor for SEMA3F and SEMA3G, as well as vascular endothelial growth factor C (VEGFC). In culture, Both SEMA3F and SEMA3G inhibit VEGFC-mediated sprouting and proliferation of human dermal LECs. In the developing mouse skin, Sema3f is expressed in the epidermis and Sema3g expression is restricted to arteries, whereas their receptor Nrp2 is preferentially expressed by lymphatic vessels. Both Sema3f;Sema3g double mutants and Nrp2 mutants exhibit increased LEC growth in the skin. In contrast, Sema3f;Sema3g double mutants display increased lymphatic branching, while Nrp2 mutants exhibit reduced lymphatic branching. A targeted mutation in PlexinA1 or PlexinA2, signal transducers forming a receptor complex with NRP2 for SEMA3s, exhibits an increase in LEC growth and lymphatic branching as observed in Sema3f;Sema3g double mutants. Our results provide the first evidence that SEMA3F and SEMA3G function as a negative regulator for dermal lymphangiogenesis in vivo. The reciprocal phenotype in lymphatic branching between Sema3f;Sema3g double mutants and Nrp2 mutants suggest a complex NRP2 function that regulates LEC behavior both positively and negatively, through a binding with VEGFC or SEMA3s

    Data for 3D reconstruction of the corticospinal tract in the wild-type and Semaphorin 6A knockout adult brain

    No full text
    The corticospinal tract (CST) has a complex and long trajectory throughout the brain. Semaphorin 6A (Sema6A), a member of the semaphorin family, is one of the important regulators of CST axon guidance. Previous studies have shown that Sema6A knockout (KO) mice have CST defects at the midbrainā€“hindbrain boundary and medulla [1]. However, the route of the aberrant fibers remained unknown. Therefore here, to track the trajectory of the abnormal fibers, 3D images of the CST in adult mice were reconstructed from serial brain sections stained with anti-PKCĪ³ antibody. Sema6A mutant brains showed CST defects that were more complex and variable than previously thought. In addition, 3D analysis helped us to identify a few new patterns of abnormal fibers.For more information about the data, please refer to an original research article, which has been recently published by Brain Research, ā€œRemarkable complexity and variability of corticospinal tract defects in adult Semaphorin 6A knockout miceā€ [2]

    <i>PlexinA1</i> and <i>plexinA3</i> are required for proper sensory innervation of the inner ear.

    No full text
    <p>Some SAG neurons projected beyond the sensory patches and extended dorsally in E13.5 <i>plexinA1</i><sup>+/āˆ’</sup>; <i>plexinA3</i><sup>+/āˆ’</sup> (A, B), <i>plexinA1</i><sup>+/āˆ’</sup>; <i>plexinA3</i><sup>null</sup> (C) and <i>plexinA1</i><sup>āˆ’/āˆ’</sup>; <i>plexinA3</i><sup>null</sup> (D) embryos (arrowheads). AC, anterior crista; Co, cochlea; HC, horizontal crista; PC, posterior crista; S, saccule; U, utricle. Scale bar, 500 Āµm.</p
    corecore