4 research outputs found

    Quantitative Detection and Biological Propagation of Scrapie Seeding Activity In Vitro Facilitate Use of Prions as Model Pathogens for Disinfection

    Get PDF
    Prions are pathogens with an unusually high tolerance to inactivation and constitute a complex challenge to the re-processing of surgical instruments. On the other hand, however, they provide an informative paradigm which has been exploited successfully for the development of novel broad-range disinfectants simultaneously active also against bacteria, viruses and fungi. Here we report on the development of a methodological platform that further facilitates the use of scrapie prions as model pathogens for disinfection. We used specifically adapted serial protein misfolding cyclic amplification (PMCA) for the quantitative detection, on steel wires providing model carriers for decontamination, of 263K scrapie seeding activity converting normal protease-sensitive into abnormal protease-resistant prion protein. Reference steel wires carrying defined amounts of scrapie infectivity were used for assay calibration, while scrapie-contaminated test steel wires were subjected to fifteen different procedures for disinfection that yielded scrapie titre reductions of ≤101- to ≥105.5-fold. As confirmed by titration in hamsters the residual scrapie infectivity on test wires could be reliably deduced for all examined disinfection procedures, from our quantitative seeding activity assay. Furthermore, we found that scrapie seeding activity present in 263K hamster brain homogenate or multiplied by PMCA of scrapie-contaminated steel wires both triggered accumulation of protease-resistant prion protein and was further propagated in a novel cell assay for 263K scrapie prions, i.e., cerebral glial cell cultures from hamsters. The findings from our PMCA- and glial cell culture assays revealed scrapie seeding activity as a biochemically and biologically replicative principle in vitro, with the former being quantitatively linked to prion infectivity detected on steel wires in vivo. When combined, our in vitro assays provide an alternative to titrations of biological scrapie infectivity in animals that substantially facilitates the use of prions as potentially highly indicative test agents in the search for novel broad-range disinfectants

    Probing reaction conditions and cofactors of conformational prion protein changes underlying the autocatalytic self-propagation of different prion strains

    Get PDF
    Prionen sind das infektiöse Agens transmissibler spongiformer Enzephalopathien von Tieren und Menschen. Prionen bestehen hauptsächlich aus einer abnormal gefalteten und aggregierten Isoform des zellulären Prionproteins (PrP). Die Replikation von Prionen findet mutmaßlich durch keiminduzierte Polymerisation des Prionproteins statt. Es existieren verschiedene Prionstämme, die unterschiedliche Eigenschaften aufweisen, aber vom selben zellulären Prionprotein abstammen können. Neben PrP scheinen Kofaktormoleküle an der Prionreplikation beteiligt zu sein. Weiterhin wird angenommen, dass Kofaktoren bei der Definition von Stammeigenschaften beteiligt sind, sowie ein Einfluss auf die Infektiosität von Prionen besteht. In dieser Arbeit wurden die Auswirkungen verschiedener Kofaktoren auf die Replikation von vier Hamster-adaptierten Prionstämmen in vitro mittels der Methode der „Protein Misfolding Cyclic Amplification“ (PMCA) untersucht. Es wurden stammabhängige Unterschiede bezüglich der Anforderungen an die Replikationsbedingungen in der PMCA, sowie Kofaktor-Selektivitäten festgestellt. Der Einfluss von Kofaktoren wurde durch den Vergleich ausgewählter biologischer, biochemischer und biophysikalischer Eigenschaften von in vitro erzeugten PMCA Produkten (PrPres) mit denen nativer Prionkeime untersucht. Es zeigte sich, dass Kofaktoren Stammeigenschaften, wie die biologische Keimaktivität in primären Gliazellkulturen und biochemische Eigenschaften, wie die Migration in SDS-Gelen, beeinflussen können. Um festzustellen, ob unterschiedliche Kofaktorbedingungen während der PMCA messbare Veränderungen der Proteinkonformation hervorrufen, wurde PMCA generiertes PrPres mittels FT-IR Spektroskopie in einer Pilotstudie charakterisiert. Erste Befunde zeigten spektrale Unterschiede zwischen den Proteinkeimen und deren PMCA Produkten bei allen Stämmen, unabhängig von den Kofaktorbedingungen.Prions are the causative agent of transmissible spongiform encephalopathies in animals and humans such as scrapie, bovine spongiform encephalopathy (BSE) and Creutzfeldt-Jakob disease (CJD). Prions are thought to be composed essentially of a misfolded and aberrantly aggregated isoform of the cellular prion protein (PrP) and to replicate by seeded PrP polymerization. Prions may exist in the form of distinct strains that differ in their phenotypic characteristics although they are derived from the same cellular prion protein. Cofactor molecules other than PrP may be involved in prion replication and may be a determinant of strain properties. Furthermore, cofactors may also be required for conveying infectivity. The present study examined the effects of different cofactor molecules on the replication efficacy of four hamster adapted prion agents using the method of serial protein misfolding cyclic amplification (PMCA) as in vitro assay for PrP misfolding and aggregation. The study revealed strain dependent differences of PMCA conditions and cofactors required for efficient in vitro replication. The impact of cofactors was assessed by comparative analyses of selected biological, biochemical and biophysical properties of PMCA products (PrPres) and native prion seeds. The biological seeding activity as monitored in a primary hamster glial cell assay, and biochemical properties such as electrophoretic migration in SDS-gels, were affected differently by different cofactors. In order to define the impact of putative cofactors on the molecular conversion of PrP in more detail, changes in the spatial structure associated with different cofactor molecule conditions during amplification of PrPres in PMCA was monitored by Fourier transform-infrared (FT-IR) spectroscopic analysis. Largely preliminary data revealed spectral differences between native prion seeds and progeny PMCA generated PrPres for all prion strains, but no variations due to different cofactor conditions

    Towards further reduction and replacement of animal bioassays in prion research by cell and protein misfolding cyclic amplification assays

    Get PDF
    Laboratory animals have long since been used extensively in bioassays for prions in order to quantify, usually in terms of median infective doses [ID50], how infectious these pathogens are in vivo. The identification of aberrant prion protein as the main component and self-replicating principle of prions has given rise to alternative approaches for prion titration. Such approaches often use protein misfolding cyclic amplification (PMCA) for the cell-free biochemical measurement of prion-associated seeding activity, or cell assays for the titration of in vitro infectivity. However, median seeding and cell culture infective doses (SD50 and CCID50, respectively) of prions are neither formally congruent nor definitely representative for ID50 titres in animals and can be therefore only tentatively translated into the latter. This may potentially impede the acceptance and use of alternative methods to animal bioassays in prion research. Thus, we suggest performing PMCA and cell assays jointly, and to check whether these profoundly different test principles deliver consistent results in order to strengthen the reliability and credibility of prion ID50 assessments by in vitro methods. With regard to this rationale, we describe three pairs of PMCA and glial cell assays for different hamster-adapted prion agents (the frequently used 263K scrapie strain, and 22A-H scrapie and BSE-H). In addition, we report on the adaptation of quantitative PMCA to human variant Creutzfeldt-Jakob disease (vCJD) prions on steel wires for prion disinfection studies. Our rationale and methodology can be systematically extended to other types of prions and used to further reduce or replace prion bioassays in rodents
    corecore