2,022 research outputs found

    A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students

    Get PDF
    Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students\u27 interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training. IMPORTANCE Engagement of undergraduate students in scientific research at early stages in their careers presents an opportunity to excite students about science, technology, engineering, and mathematics (STEM) disciplines and promote continued interests in these areas. Many excellent course-based undergraduate research experiences have been developed, but scaling these to a broader impact with larger numbers of students is challenging. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunting Advancing Genomics and Evolutionary Science (SEA-PHAGES) program takes advantage of the huge size and diversity of the bacteriophage population to engage students in discovery of new viruses, genome annotation, and comparative genomics, with strong impacts on bacteriophage research, increased persistence in STEM fields, and student self-identification with learning gains, motivation, attitude, and career aspirations

    Marine Biological Monitoring in Broward County, Florida: Year 2 Annual Report

    Get PDF
    A study has been undertaken to monitor Broward County, Florida (southeast Florida) coral communities, reef fish assemblages and sedimentation rates in relation to possible effects from a proposed extensive beach renourishment (restoration) project. Coral communities and reef fish assemblages will be monitored at a total of 23 stations distributed offshore Broward County. This monitoring effort will characterize and quantify populations of scleractinian (stony) corals, octocorallian (gorgonian) corals, sponges, and reef fishes. In addition, sediment traps located at each station will be sampled and analyzed. This document reports the data collected during the second year of this project. Coral communities and fish assemblages were monitored at each of the 23 sites between September and October 2001. In addition, sedimentation analysis for the January, March, May, July and September 2001 collections were conducted. For September/October 2001, mean (± 1 S.D.) stony coral density for the 23 sites was 2.62 ± 1.85 colonies/m2. Mean stony coral coverage was 2.39 ± 3.96%. Mean gorgonian density was 7.91 ± 8.01 colonies/m2 and mean sponge density was 14.09 ± 6.93 colonies/m2. First Reef sites had greater mean stony coral coverage but lower gorgonian and sponge density than Second and Third Reef sites. First Reef coral cover was much lower than the Third Reef when the First reef site, FTL4, was removed from the analysis. FTL4 had much greater stony coral cover than the mean cover for the remaining First Reef sites (19.95% compared to 1.45%). Shannon-Weaver Diversity Indices performed on the overall transect data resulted in values of 1.45 ± 0.53 and 1.72 ± 0.44 for cover and number of species respectively. Overall evenness was 0.77 ± 0.14 for number of species and 0.64 ± 0.21 for cover. There was no significant difference determined between the January/February 2001 site visit data and the September/October 2001 site visit data for mean stony coral density and cover. Mean octocoral density also did not differ significantly between these site visits, but mean sponge density was significantly less in September/October 2001 than in January/February 2001. Stony coral density, stony coral coverage, gorgonian density and sponge density data collected from the 18 monitoring sites established in 1997 and visited yearly from 1997 to 1999 were analyzed. No significant difference in yearly mean stony coral density, mean stony coral cover and mean gorgonian density was determined. Mean sponge density did show significant differences with 1998 sponge density greater than 1997. Trends in fish density were similar to those trends identified within the coral community transects. The greatest density of fishes occurs on the Third Reef followed by the First and Second. A difference in richness was seen amongst the three Reefs with the First Reef having the lowest number of species. The differences noted in abundance, density, and richness between the data collected in January/February 2001 and in September/October 2001 confirm previous reports of temporal differences in the fish assemblage offshore Broward County (Spieler 1998). The First Reef had a statistically higher rate of sedimentation than both the Second and Third Reefs when data from January-September 2001 were pooled. Pooled site data showed that January 2001 and May 2001 samples had the greatest sedimentation rates. The grain size for sites on the Third Reef was significantly smaller than both the First and Second Reefs. When site data were pooled, January 2001 had a significantly larger mean grain size than the other four sampling intervals in 2001. Data collected and analyses completed during this monitoring project will be used to help evaluate effects from the proposed beach renourishment project

    Examining whether the information-motivation-behavioral skills model predicts medication adherence for patients with a rare disease.

    Get PDF
    The information-motivation-behavioral skills (IMB) model has been used to explain and promote medication adherence among patients with diabetes and HIV. The objective of this study was to examine whether the IMB model predicted medication adherence among vasculitis patients. Adult vasculitis patients (n=228) completed online questionnaires at baseline and 3-month follow-up. Linear regressions were calculated to determine the direct effects of information and motivation on medication adherence (P<0.05). A mediation analysis using a bootstrapping approach was used to test whether behavioral skills significantly mediated the effect of information and motivation on medication adherence. Participants reported high levels of information (M=4.0; standard deviation [SD]=0.68), moderate levels of motivation (M=2.7; SD=1.00), and high levels of behavioral skills (M=4.1; SD=0.74). In the regression model, only behavioral skills (B=0.38; P<0.001) were significantly associated with medication adherence; however, mediation analysis revealed that behavioral skills significantly mediated the effects of information and motivation on medication adherence. The results support the IMB-hypothesized relationships between information, motivation, behavioral skills, and medication adherence in our sample. Findings suggest that providers should work with vasculitis patients to increase their medication-related skills to improve medication adherence

    Differential Regulation of Primitive Myelopoiesis in the Zebrafish by Spi-1/Pu.1 and C/ebp1

    Full text link
    The zebrafish has become a powerful tool for analysis of vertebrate hematopoiesis. Zebrafish, unlike mammals, have a robust primitive myeloid pathway that generates both granulocytes and macrophages. It is not clear how this unique primitive myeloid pathway relates to mammalian definitive hematopoiesis. In this study, we show that the two myeloid subsets can be distinguished using RNA in situ hybridization. Using a morpholino-antisense gene knockdown approach, we have characterized the hematopoietic defects resulting from knockdown of the myeloid transcription factor gene pu.1 and the unique zebrafish gene c/ebp1. Severe reduction of pu.1 resulted in complete loss of primitive macrophage development, with effects on granulocyte development only with maximal knockdown. Reduction of c/ebp1 did not ablate initial macrophage or granulocyte development, but resulted in loss of expression of the secondary granule gene lys C. These data reveal strong functional conservation of pu.1 between zebrafish primitive myelopoiesis and mammalian definitive myelopoiesis. Further, these results are consistent with a conserved role between c/ebp1 and mammalian C/EBPE, whose ortholog in zebrafish has not been identified. These studies validate the examination of zebrafish primitive myeloid development as a model for human myelopoiesis, and form a framework for identification and analysis of myeloid mutants.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63190/1/zeb.2007.0505.pd

    Acute Effects of Implantable Cardioverter-Defibrillator Shocks on Biomarkers of Myocardial Injury, Apoptosis, Heart Failure, and Systemic Inflammation

    Get PDF
    Background: Implantable cardioverter‐defibrillator (ICD) shocks are potentially associated with myocardial injury, altered hemodynamics, apoptosis, and inflammatory signaling. Their precise cellular impact can be explored after defibrillation testing (DFT) via biomarkers. We evaluated changes in biomarkers after ICD shocks during DFT. Methods: We prospectively enrolled outpatients presenting for first implantation of a cardiac device. Biomarkers indicative of myocardial injury, inflammation, and apoptosis were measured before and after implantation, and compared between patients receiving DFT (DFT+) to those not (DFT−). Results: Sixty‐three patients were enrolled, 40 in the DFT+ group and 23 in the DFT− group. Average levels of troponin I, hsCRP, Calprotectin, N‐terminal pro B‐type natriuretic peptide (NTproBNP), and sFas increased by \u3e50% after cardiac device implantation compared to baseline. Increase in troponin never exceeded the 50‐fold upper limit of normal (2 ng/mL). Troponin trended higher in the DFT+ group at 8 hours (median 0.18 ng/mL, interquartile range [IQR] 0.11–0.48) versus the DFT− group (0.10 ng/mL, IQR 0.06–0.28, P = 0.0501); NTproBNP had a similar trend (P = 0.0581). sFas significantly increased in the DFT+ group from baseline (median 4663 pg/mL, IQR 2908–5679) to 24 hours (5039 pg/mL, IQR 3274–6261; P = 0.0338) but not in the DFT− group (P = 0.4705). Conclusion: DFT testing is associated with acutely increased plasma levels of troponin and sFas, a biomarker of apoptosis, along with a trend toward higher NTproBNP
    • 

    corecore