49 research outputs found

    Study of tissue temperature distribution during laser-immunotherapy for cancer treatment

    Get PDF
    Scope and Method of Study: The ideal cancer treatment modality should not only cause primary tumor suppression but also induce an anti-tumor immunity, which is essential in controlling metastatic tumors. Motivation of this work is to monitor temperature during laser-cancer treatment. A Monte Carlo method for the light transport in tissue and a finite difference method for the solution of heat diffusion equation were performed to estimate the laser dose parameters, and concentration levels of dye and immunoadjuvant. The specimens used were gelatin phantom, rats and mice. Magnetic Resonance Imaging thermometry (MRT) and infrared thermography (IRT) have been used for the measurement of temperature in the biological tissues during treatment of the primary tumors. Thermal imaging is used to estimate the laser-dose in application to cancer treatment. The thermal imaging and dose calculation can increase the level of safety in the treatment by providing information on target tissue and also on surrounding normal tissue.Findings and Conclusions: Magnetic Resonance Imaging (MRI) has been applied to measure the thermal distribution in gel phantom and tumor-bearing rats during laser treatment. Infrared thermography has been applied to measure the surface temperature under the same conditions in tumor-bearing mice. Intratumoral injection of both indocyanine green (ICG) and glycated chitosan (GC) followed by 805-nm laser irradiation has been found efficacious in the cancer treatment. The temperature rise with ICG and laser combination therapy was about 25 °C and with the ICG, GC, and laser combination therapy, the temperature increased by 30 °C. This infers that ICG and GC injection potentiates the laser-immunotherapy. In both the cases, the tumor temperature attains the cancer cell damage temperature range of 60 °C - 70 °C resulting in an increase in the survival time of the treated mice. More importantly, the temperature profiles in this study agree with the Monte Carlo simulation results. In summary, a combination therapy using a laser, a laser-absorbing dye, and an immunoadjuvant guided by temperature measurement probes, such as MRT and IRT, is an effective treatment modality

    Temperature distribution in selective laser-tissue interaction

    Get PDF
    Selective photothermal interaction using dye enhancement has proven to be effective in minimizing surrounding tissue damage and delivering energy to target tissue. During laser irradiation, the process of photon absorption and thermal energy diffusion in the target tissue and its surrounding tissue are crucial. Such information allows the selection of proper operating parameters such as dye concentrations, laser power, and exposure time for optimal therapeutic effect. Combining the Monte Carlo method for energy absorption and the finite difference method for heat diffusion, the temperature distributions in target tissue and surrounding tissue in dye enhanced laser photothermal interaction are obtained. Different tissue configurations and dye enhancement are used in the simulation, and different incident beam sizes are also used to determine optimum beam sizes for various tissue configurations. Our results show that the algorithm developed in this study could predict the thermal outcome of laser irradiation. Our simulation indicates that with appropriate absorption enhancement of the target tissue, the temperature in the target tissue and in the surrounding tissue can be effectively controlled. This method can be used for optimization of lesion treatment using laser photothermal interactions. It may also provide guidance for laser immunotherapy in cancer treatment, since the immunological responses are believed to be related to tissue temperature changes

    Temperature distribution in selective laser-tissue interaction

    Get PDF
    Selective photothermal interaction using dye enhancement has proven to be effective in minimizing surrounding tissue damage and delivering energy to target tissue. During laser irradiation, the process of photon absorption and thermal energy diffusion in the target tissue and its surrounding tissue are crucial. Such information allows the selection of proper operating parameters such as dye concentrations, laser power, and exposure time for optimal therapeutic effect. Combining the Monte Carlo method for energy absorption and the finite difference method for heat diffusion, the temperature distributions in target tissue and surrounding tissue in dye enhanced laser photothermal interaction are obtained. Different tissue configurations and dye enhancement are used in the simulation, and different incident beam sizes are also used to determine optimum beam sizes for various tissue configurations. Our results show that the algorithm developed in this study could predict the thermal outcome of laser irradiation. Our simulation indicates that with appropriate absorption enhancement of the target tissue, the temperature in the target tissue and in the surrounding tissue can be effectively controlled. This method can be used for optimization of lesion treatment using laser photothermal interactions. It may also provide guidance for laser immunotherapy in cancer treatment, since the immunological responses are believed to be related to tissue temperature changes

    Magnetic resonance imaging guidance for laser photothermal therapy

    Get PDF
    Temperature distribution is a crucial factor in determining the outcome of laser phototherapy in cancer treatment. Magnetic resonance imaging (MRI) is an ideal method for 3-D noninvasive temperature measurement. A 7.1-T MRI was used to determine laser-induced high thermal gradient temperature distribution of target tissue with high spatial resolution. Using a proton density phase shift method, thermal mapping is validated for in vivo thermal measurement with light-absorbing enhancement dye. Tissue-simulating phantom gels, biological tissues, and tumor-bearing animals were used in the experiments. An 805-nm laser was used to irradiate the samples, with laser power in the range of 1to3W. A clear temperature distribution matrix within the target and surrounding tissue was obtained with a specially developed processing algorithm. The temperature mapping showed that the selective laser photothermal effect could result in temperature elevation in a range of 10to45°C. The temperature resolution of the measurement was about 0.37°C with 0.4-mm spatial resolution. The results of this study provide in vivo thermal information and future reference for optimizing laser dosage and dye concentration in cancer treatment

    Skin Transcriptome of Middle-Aged Women Supplemented With Natural Herbo-mineral Shilajit Shows Induction of Microvascular and Extracellular Matrix Mechanisms

    Get PDF
    Objective: Shilajit is a pale-brown to blackish-brown organic mineral substance available from Himalayan rocks. We demonstrated that in type I obese humans, shilajit supplementation significantly upregulated extracellular matrix (ECM)–related genes in the skeletal muscle. Such an effect was highly synergistic with exercise. The present study (clinicaltrials.gov ) aimed to evaluate the effects of shilajit supplementation on skin gene expression profile and microperfusion in healthy adult females. Methods: The study design comprised six total study visits including a baseline visit (V1) and a final 14-week visit (V6) following oral shilajit supplementation (125 or 250 mg bid). A skin biopsy of the left inner upper arm of each subject was collected at visit 2 and visit 6 for gene expression profiling using Affymetrix Clariom™ D Assay. Skin perfusion was determined by MATLAB processing of dermascopic images. Transcriptome data were normalized and subjected to statistical analysis. The differentially regulated genes were subjected to Ingenuity Pathway Analysis (IPA®). The expression of the differentially regulated genes identified by IPA® were verified using real-time polymerasechain reaction (RT-PCR). Results: Supplementation with shilajit for 14 weeks was not associated with any reported adverse effect within this period. At a higher dose (250 mg bid), shilajit improved skin perfusion when compared to baseline or the placebo. Pathway analysis identified shilajit-inducible genes relevant to endothelial cell migration, growth of blood vessels, and ECM which were validated by quantitative real-time polymerasechain reaction (RT-PCR) analysis. Conclusions: This work provides maiden evidence demonstrating that oral shilajit supplementation in adult healthy women induced genes relevant to endothelial cell migration and growth of blood vessels. Shilajit supplementation improved skin microperfusion

    Nanotransfection-based vasculogenic cell reprogramming drives functional recovery in a mouse model of ischemic stroke

    Get PDF
    Ischemic stroke causes vascular and neuronal tissue deficiencies that could lead to substantial functional impairment and/or death. Although progenitor-based vasculogenic cell therapies have shown promise as a potential rescue strategy following ischemic stroke, current approaches face major hurdles. Here, we used fibroblasts nanotransfected with Etv2, Foxc2, and Fli1 (EFF) to drive reprogramming-based vasculogenesis, intracranially, as a potential therapy for ischemic stroke. Perfusion analyses suggest that intracranial delivery of EFF-nanotransfected fibroblasts led to a dose-dependent increase in perfusion 14 days after injection. MRI and behavioral tests revealed ~70% infarct resolution and up to ~90% motor recovery for mice treated with EFF-nanotransfected fibroblasts. Immunohistological analysis confirmed increases in vascularity and neuronal cellularity, as well as reduced glial scar formation in response to treatment with EFF-nanotransfected fibroblasts. Together, our results suggest that vasculogenic cell therapies based on nanotransfection-driven (i.e., nonviral) cellular reprogramming represent a promising strategy for the treatment of ischemic stroke

    Oxygen-Inducible Glutamate Oxaloacetate Transaminase as Protective Switch Transforming Neurotoxic Glutamate to Metabolic Fuel During Acute Ischemic Stroke

    No full text
    This work rests on our previous report (J Cereb Blood Flow Metab 30: 1275–1287, 2010) recognizing that glutamate (Glu) oxaloacetate transaminase (GOT) is induced when brain tissue hypoxia is corrected during acute ischemic stroke (AIS). GOT can metabolize Glu into tricarboxylic acid cycle intermediates and may therefore be useful to harness excess neurotoxic extracellular Glu during AIS as a metabolic substrate. We report that in cultured neural cells challenged with hypoglycemia, extracellular Glu can support cell survival as long as there is sufficient oxygenation. This effect is abrogated by GOT knockdown. In a rodent model of AIS, supplemental oxygen (100% O2 inhaled) during ischemia significantly increased GOT expression and activity in the stroke-affected brain tissue and prevented loss of ATP. Biochemical analyses and in vivo magnetic resonance spectroscopy during stroke demonstrated that such elevated GOT decreased Glu levels at the stroke-affected site.In vivo lentiviral gene delivery of GOT minimized lesion volume, whereas GOT knockdown worsened stroke outcomes. Thus, brain tissue GOT emerges as a novel target in managing stroke outcomes. This work demonstrates that correction of hypoxia during AIS can help clear extracellular neurotoxic Glu by enabling utilization of this amino acid as a metabolic fuel to support survival of the hypoglycemic brain tissue. Strategies to mitigate extracellular Glu-mediated neurodegeneration via blocking receptor-mediated excitotoxicity have failed in clinical trials. We introduce the concept that under hypoglycemic conditions extracellular Glu can be transformed from a neurotoxin to a survival factor by GOT, provided there is sufficient oxygen to sustain cellular respiration

    Oxygen-Inducible Glutamate Oxaloacetate Transaminase as Protective Switch Transforming Neurotoxic Glutamate to Metabolic Fuel During Acute Ischemic Stroke

    No full text
    This work rests on our previous report (J Cereb Blood Flow Metab 30: 1275–1287, 2010) recognizing that glutamate (Glu) oxaloacetate transaminase (GOT) is induced when brain tissue hypoxia is corrected during acute ischemic stroke (AIS). GOT can metabolize Glu into tricarboxylic acid cycle intermediates and may therefore be useful to harness excess neurotoxic extracellular Glu during AIS as a metabolic substrate. We report that in cultured neural cells challenged with hypoglycemia, extracellular Glu can support cell survival as long as there is sufficient oxygenation. This effect is abrogated by GOT knockdown. In a rodent model of AIS, supplemental oxygen (100% O2 inhaled) during ischemia significantly increased GOT expression and activity in the stroke-affected brain tissue and prevented loss of ATP. Biochemical analyses and in vivo magnetic resonance spectroscopy during stroke demonstrated that such elevated GOT decreased Glu levels at the stroke-affected site.In vivo lentiviral gene delivery of GOT minimized lesion volume, whereas GOT knockdown worsened stroke outcomes. Thus, brain tissue GOT emerges as a novel target in managing stroke outcomes. This work demonstrates that correction of hypoxia during AIS can help clear extracellular neurotoxic Glu by enabling utilization of this amino acid as a metabolic fuel to support survival of the hypoglycemic brain tissue. Strategies to mitigate extracellular Glu-mediated neurodegeneration via blocking receptor-mediated excitotoxicity have failed in clinical trials. We introduce the concept that under hypoglycemic conditions extracellular Glu can be transformed from a neurotoxin to a survival factor by GOT, provided there is sufficient oxygen to sustain cellular respiration
    corecore