22 research outputs found

    Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet

    Get PDF
    We present the designs of probes for making critical current density (J c ) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ∌0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make J c measurements, made by uniformly ramping the current up to a maximum current (I max) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b â€Č), and the maximum safe temperature for the critical-current leads (T max). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LImax/A=[1.46D−0.18L0.4(Tmax−300)0.25D−0.09+750(bâ€Č/Imax)D10−3Imax−2.87bâ€Č]×106Am−1 where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm2 is obtained when I max = 1000 A, T max = 400 K, D = 0.2, b â€Č = 0.3 l h−1 and L = 1.0 m. The optimized helium consumption was found to be 0.7 l h−1. When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/I max  ≈ (1.35 × 10−3)D 0.41 l h‑1 A−1. A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in our high-field horizontal magnet. The variable-temperature system is based on the use of an inverted insulating cup that operates above 4.2 K in liquid helium and above 77.4 K in liquid nitrogen, with a stability of ±80 mK to ±150 mK. Uniaxial strains of −1.4% to 1.0% can be applied to the sample, with a total uncertainty of better than ±0.02%, using a modified bending beam apparatus which includes a copper beryllium springboard-shaped sample holder

    Magnetic Field Mapping of 1.3 GHz Superconducting Radio Frequency Niobium Cavities

    Get PDF
    Niobium is the material of choice to build superconducting radio frequency (SRF) cavities, which are fundamental building blocks of modern particle accelerators. These cavities require a cryogenic cool-down to ~2 - 4 K for optimum performance minimizing RF losses on the inner cavity surface. However, temperature-independent residual losses in SRF cavities cannot be prevented entirely. One of the significant contributor to residual losses is trapped magnetic flux. The flux trapping mechanism depends on different factors, such as surface preparations and cool-down conditions. We have developed a diagnostic magnetic field scanning system (MFSS) using Hall probes and anisotropic magneto-resistance sensors to study the spatial distribution of trapped flux in 1.3 GHz single-cell cavities. The first result from this newly commissioned system revealed that the trapped flux on the cavity surface might redistribute with increasing RF power. The MFSS was also able to capture significant magnetic field enhancement at specific cavity locations after a quench

    The Cause of ‘Weak-Link’ Grain Boundary Behaviour in Polycrystalline Bi2Sr2CaCu2O8 and Bi2Sr2Ca2Cu3O10 Superconductors

    Get PDF
    The detrimental effects of grain boundaries have long been considered responsible for the low critical current densities (J_c) in high temperature superconductors. In this paper, we apply the quantitative approach used to identify the cause of the 'weak-link' grain boundary behaviour in YBa2Cu3O7 [1], to the Bi2Sr2CaCu2O8 and Bi2Sr2Ca2Cu3O10 materials that we have fabricated. Magnetic and transport measurements are used to characterise the grain and grain boundary properties of micro- and nanocrystalline material. Magnetisation measurements on all nanocrystalline materials show non-Bean-like behaviour and are consistent with surface pinning. Bi2Sr2CaCu2O8: Our microcrystalline material has very low grain boundary resistivity (ρ_GB), which is similar to that of the grains (ρ_G) such that ρ_GB≈ρ_G=2×〖10〗^(-5) Ωm (assuming a grain boundary thickness (d) of 1 nm) equivalent to an areal resistivity of ρ_G=2×〖10〗^(-14) Ωm^2. The transport J_c values are consistent with well-connected grains and very weak grain boundary pinning. However, unlike low temperature superconductors in which decreasing grain size increases the pinning along the grain boundary channels, any increase in pinning produced by making the grains in our Bi2Sr2CaCu2O8 materials nanocrystalline was completely offset by a decrease in the depairing current density of the grain boundaries caused by their high resistivity. We suggest a different approach to increasing J_c from that used in LTS materials, namely incorporating additional strong grain and grain boundary pinning sites in microcrystalline materials to produce high J_c values. Bi2Sr2Ca2Cu3O10: Both our micro- and nanocrystalline samples have ρ_GB/ρ_G of at least 10^3. This causes strong suppression of J_c across the grain boundaries, which explains the low transport J_c values we find experimentally. Our calculations show that low J_c in untextured polycrystalline Bi2Sr2Ca2Cu3O10 material is to be expected and the significant effort in the community in texturing samples and removing grain boundaries altogether is well-founded

    Angular, Temperature, and Strain Dependencies of the Critical Current of DI-BSCCO Tapes in High Magnetic Fields

    No full text
    High critical current density (Jc) DI-BSCCO Bi-2223 superconducting tape has been developed by Sumitomo Electric Industries (SEI) using the Controlled Over-Pressure (CT-OP) technique to improve the texturing and densification. Further enhancement of the mechanical properties has been obtained using lamination. We have investigated the effect of magnetic field and field orientation on Jc for a series of test DI-BSCCO tapes at 77 K and 4.2 K under tensile and compressive strains. These critical current data are strongly influenced by the anisotropy of Bi-2223, the texturing of the tape and its architecture. The magnetic field and angular dependence of Jc at 77 K can be described using a simple anisotropic exponential magnetic field model which includes the effects of the two-dimensionality and grain misalignment in these composites. The variation in the normalized Jc with respect to the strain is linear over the reversible range of strain where the gradient of the strain dependence is independent of temperature and field. The reversibility of Jc is extended further into the compressive regime after Jc degradation by compression

    The critical current density of grain boundary channels in polycrystalline HTS and LTS superconductors in magnetic fields

    Get PDF
    We provide evidence that a single mechanism—flux flow along channels—can explain the functional form of the critical current density (Jc) in the low-temperature superconductor Nb3Sn and in the high-temperature superconductors (HTS) YBa2Cu3O7−ή (YBCO) and (Bi,Pb)2Sr2Can−1CunOx (BiSCCO) in low and high magnetic fields. In this paper, we show that standard flux pinning theories, used for the past four decades to describe Jc in low-temperature superconductors (LTS), cannot explain the strain dependence of Jc in YBCO because Jc is a function of strain but the average superconducting properties are not. We conclude that in the polycrystalline samples presented here, the channels are grain boundaries that are narrow and metallic in Nb3Sn and YBCO but wide and semiconducting in BiSCCO. In Nb3Sn, strain alters Jc by changing the superconducting properties of the grains, whereas in YBCO, strain alters Jc by changing the properties of the grain boundaries
    corecore