669 research outputs found

    Ayurvedic interventional management of Manyagatavata w.s.r. to Cervical Spondylotic Myelopathy (CSM) - A Case Study

    Get PDF
    Cervical Spondylotic Myelopathy (CSM) is a degenerative spinal disease which may lead to significant clinical morbidity. The onset of symptoms is usually insidious, with long periods of fixed disability and episodic worsening events. Regarding the pathophysiology of CSM, the repeated injuries to the spinal cord are caused by both static and dynamic mechanical factors. Only limited surgical procedures, neuroplasticity and other medical interventions are employed in modern medicine.  The standard treatment for moderate to severe CSM is operative procedures which are least preferred by the elderly patients. Hence there is a need to search for effective treatment in alternative medicine. According to Ayurveda, cervical spondylosis can be co-related with Manyagatavata, a type of Vataja Vyadhi. A 48 years old male patient presented with Neck pain, neck stiffness, and back pain since 4 years. Here, we are presenting a case of Cervical Spondylotic Myelopathy (CSM) which was treated with Ayurvedic Panchakarma procedures such as Virechana with Mahatikta Ghruta, Tiktaksheera Basti, Greeva Basti, Nasya Karma with Vacha Taila along with Ayurvedic oral drugs like Tab Brihatvata Chintamani Rasa, Ashvagandha Churna with Kavacha Beeja Churna, Amruta Guggula, Ekangaveera Rasa and Chaturbhurja Rasa. These entire drugs were prescribed for twice a day after meals. This case report revealed usefulness of Panchakarma procedures and Ayurveda oral medicines in the management of Manyagatavata w.s.r. to Cervical Spondylotic Myelopathy (CSM)

    Optical analysis of samarium doped sodium bismuth silicate glass

    Get PDF
    Samarium doped sodium bismuth silicate glass was synthesized using the melt quenching method. Detailed optical spectroscopic studies of the glassy material were carried out in the UV–Vis-NIR spectral range. Using the optical absorption spectra Judd-Ofelt (JO) parameters are derived. The calculated values of the JO parameters are utilized in evaluating the various radiative parameters such as electric dipole line strengths (Sed), radiative transition probabilities (Arad), radiative lifetimes (τrad), fluorescence branching ratios (ÎČ) and the integrated absorption cross- sections (σa) for stimulated emission from various excited states of Sm3 +‡ ion. The principal fluorescence transitions are identified by recording the fluorescence spectrum. Our analysis revealed that the novel glassy system has the optimum values for the key parameters viz. spectroscopic quality factor, optical gain, stimulated emission cross section and quantum efficiency, which are required for a high performance optical amplifier. Calculated chromaticity co-ordinates (0.61, 0.38) also confirm its application potential in display devices

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Acute otitis externa: Consensus definition, diagnostic criteria and core outcome set development.

    Get PDF
    OBJECTIVE: Evidence for the management of acute otitis externa (AOE) is limited, with unclear diagnostic criteria and variably reported outcome measures that may not reflect key stakeholder priorities. We aimed to develop 1) a definition, 2) diagnostic criteria and 3) a core outcome set (COS) for AOE. STUDY DESIGN: COS development according to Core Outcome Measures in Effectiveness Trials (COMET) methodology and parallel consensus selection of diagnostic criteria/definition. SETTING: Stakeholders from the United Kingdom. SUBJECTS AND METHODS: Comprehensive literature review identified candidate items for the COS, definition and diagnostic criteria. Nine individuals with past AOE generated further patient-centred candidate items. Candidate items were rated for importance by patient and professional (ENT doctors, general practitioners, microbiologists, nurses, audiologists) stakeholders in a three-round online Delphi exercise. Consensus items were grouped to form the COS, diagnostic criteria, and definition. RESULTS: Candidate COS items from patients (n = 28) and literature (n = 25) were deduplicated and amalgamated to a final candidate list (n = 46). Patients emphasised quality-of-life and the impact on daily activities/work. Via the Delphi process, stakeholders agreed on 31 candidate items. The final COS covered six outcomes: pain; disease severity; impact on quality-of-life and daily activities; patient satisfaction; treatment-related outcome; and microbiology. 14 candidate diagnostic criteria were identified, 8 reaching inclusion consensus. The final definition for AOE was 'diffuse inflammation of the ear canal skin of less than 6 weeks duration'. CONCLUSION: The development and adoption of a consensus definition, diagnostic criteria and a COS will help to standardise future research in AOE, facilitating meta-analysis. Consulting former patients throughout development highlighted deficiencies in the outcomes adopted previously, in particular concerning the impact of AOE on daily life

    Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10−23/Hz−−−√ was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30  M⊙ could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914

    Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814

    Get PDF
    International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    Full text link
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70 M⊙M_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≀0.30 < e \leq 0.3 at 0.330.33 Gpc−3^{-3} yr−1^{-1} at 90\% confidence level.Comment: 24 pages, 5 figure
    • 

    corecore