35 research outputs found

    Risk Prediction Using Genome-Wide Association Studies on Type 2 Diabetes

    Get PDF
    The success of genome-wide association studies (GWASs) has enabled us to improve risk assessment and provide novel genetic variants for diagnosis, prevention, and treatment. However, most variants discovered by GWASs have been reported to have very small effect sizes on complex human diseases, which has been a big hurdle in building risk prediction models. Recently, many statistical approaches based on penalized regression have been developed to solve the ā€œlarge p and small nā€ problem. In this report, we evaluated the performance of several statistical methods for predicting a binary trait: stepwise logistic regression (SLR), least absolute shrinkage and selection operator (LASSO), and Elastic-Net (EN). We first built a prediction model by combining variable selection and prediction methods for type 2 diabetes using Affymetrix Genome-Wide Human SNP Array 5.0 from the Korean Association Resource project. We assessed the risk prediction performance using area under the receiver operating characteristic curve (AUC) for the internal and external validation datasets. In the internal validation, SLR-LASSO and SLR-EN tended to yield more accurate predictions than other combinations. During the external validation, the SLR-SLR and SLR-EN combinations achieved the highest AUC of 0.726. We propose these combinations as a potentially powerful risk prediction model for type 2 diabetes

    Prediction of Quantitative Traits Using Common Genetic Variants: Application to Body Mass Index

    Get PDF
    With the success of the genome-wide association studies (GWASs), many candidate loci for complex human diseases have been reported in the GWAS catalog. Recently, many disease prediction models based on penalized regression or statistical learning methods were proposed using candidate causal variants from significant single-nucleotide polymorphisms of GWASs. However, there have been only a few systematic studies comparing existing methods. In this study, we first constructed risk prediction models, such as stepwise linear regression (SLR), least absolute shrinkage and selection operator (LASSO), and Elastic-Net (EN), using a GWAS chip and GWAS catalog. We then compared the prediction accuracy by calculating the mean square error (MSE) value on data from the Korea Association Resource (KARE) with body mass index. Our results show that SLR provides a smaller MSE value than the other methods, while the numbers of selected variables in each model were similar

    WISARD: workbench for integrated superfast association studies for related datasets

    Get PDF
    Background: A Mendelian transmission produces phenotypic and genetic relatedness between family members, giving family-based analytical methods an important role in genetic epidemiological studiesā€”from heritability estimations to genetic association analyses. With the advance in genotyping technologies, whole-genome sequence data can be utilized for genetic epidemiological studies, and family-based samples may become more useful for detecting de novo mutations. However, genetic analyses employing family-based samples usually suffer from the complexity of the computational/statistical algorithms, and certain types of family designs, such as incorporating data from extended families, have rarely been used. Results: We present a Workbench for Integrated Superfast Association studies for Related Data (WISARD) programmed in C/C++. WISARD enables the fast and a comprehensive analysis of SNP-chip and next-generation sequencing data on extended families, with applications from designing genetic studies to summarizing analysis results. In addition, WISARD can automatically be run in a fully multithreaded manner, and the integration of R software for visualization makes it more accessible to non-experts. Conclusions: Comparison with existing toolsets showed that WISARD is computationally suitable for integrated analysis of related subjects, and demonstrated that WISARD outperforms existing toolsets. WISARD has also been successfully utilized to analyze the large-scale massive sequencing dataset of chronic obstructive pulmonary disease data (COPD), and we identified multiple genes associated with COPD, which demonstrates its practical value. Electronic supplementary material The online version of this article (10.1186/s12920-018-0345-y) contains supplementary material, which is available to authorized users

    Development and validation of a scoring system for advanced colorectal neoplasm in young Korean subjects less than age 50 years

    Get PDF
    Background/Aims Colorectal cancer incidence among patients aged ā‰¤50 years is increasing. This study aimed to develop and validate an advanced colorectal neoplasm (ACRN) screening model for young adults aged <50 years in Korea. Methods This retrospective cross-sectional study included 59,575 consecutive asymptomatic Koreans who underwent screening colonoscopy between 2003 and 2012 at a single comprehensive health care center. Young Adult Colorectal Screening (YCS) score was developed as an optimized risk stratification model for ACRN using multivariate analysis and was internally validated. The predictive power and diagnostic performance of YCS score was compared with those of Asia-Pacific Colorectal Screening (APCS) and Korean Colorectal Screening (KCS) scores. Results 41,702 and 17,873 subjects were randomly allocated into the derivation and validation cohorts, respectively, by examination year. ACRN prevalence was 0.9% in both cohorts. YCS score comprised sex, age, alcohol, smoking, obesity, glucose metabolism abnormality, and family history of CRC, with score ranges of 0 to 10. In the validation cohort, ACRN prevalence was 0.6% in the low-risk tier (score, 0ā€“4), 1.5% in the moderate-risk tier (score, 5ā€“7), and 3.4% in the high-risk tier (score, 8ā€“10). ACRN risk increased 2.5-fold (95% confidence interval [CI], 1.8ā€“3.4) in the moderate-risk tier and 5.8-fold (95% CI, 3.4ā€“9.8) in the high-risk tier compared with the low-risk tier. YCS score identified better balanced accuracy (53.9%) than APCS (51.5%) and KCS (50.7%) scores and had relatively good discriminative power (area under the curve=0.660). Conclusions YCS score based on clinical and laboratory risk factors was clinically effective and beneficial for predicting ACRN risk and targeting screening colonoscopy in adults aged <50 years

    Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms.

    Get PDF
    To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the biology of specific disease susceptibility loci

    Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees

    Get PDF
    Significance Contributions of rare variants to common and complex traits such as type 2 diabetes (T2D) are difficult to measure. This paper describes our results from deep whole-genome analysis of large Mexican-American pedigrees to understand the role of rare-sequence variations in T2D and related traits through enriched allele counts in pedigrees. Our study design was well-powered to detect association of rare variants if rare variants with large effects collectively accounted for large portions of risk variability, but our results did not identify such variants in this sample. We further quantified the contributions of common and rare variants in gene expression profiles and concluded that rare expression quantitative trait loci explain a substantive, but minor, portion of expression heritability.</jats:p

    Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms

    Get PDF
    To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the biology of specific disease susceptibility loci

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    Get PDF
    Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants

    delivery worker

    No full text

    Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES)

    No full text
    Abstract Background Genome-wide association studies have successfully identified genetic variants associated with human disease. Various statistical approaches based on penalized and machine learning methods have recently been proposed for disease prediction. In this study, we evaluated the performance of several such methods for predicting asthma using the Korean Chip (KORV1.1) from the Korean Genome and Epidemiology Study (KoGES). Results First, single-nucleotide polymorphisms were selected via single-variant tests using logistic regression with the adjustment of several epidemiological factors. Next, we evaluated the following methods for disease prediction: ridge, least absolute shrinkage and selection operator, elastic net, smoothly clipped absolute deviation, support vector machine, random forest, boosting, bagging, naĆÆve Bayes, and k-nearest neighbor. Finally, we compared their predictive performance based on the area under the curve of the receiver operating characteristic curves, precision, recall, F1-score, Cohenā€²s Kappa, balanced accuracy, error rate, Matthews correlation coefficient, and area under the precision-recall curve. Additionally, three oversampling algorithms are used to deal with imbalance problems. Conclusions Our results show that penalized methods exhibit better predictive performance for asthma than that achieved via machine learning methods. On the other hand, in the oversampling study, randomforest and boosting methods overall showed better prediction performance than penalized methods
    corecore