24 research outputs found

    Δ133p53β isoform pro-invasive activity is regulated through an aggregation-dependent mechanism in cancer cells

    Get PDF
    International audienceAbstract The p53 isoform, Δ133p53β, is critical in promoting cancer. Here we report that Δ133p53β activity is regulated through an aggregation-dependent mechanism. Δ133p53β aggregates were observed in cancer cells and tumour biopsies. The Δ133p53β aggregation depends on association with interacting partners including p63 family members or the CCT chaperone complex. Depletion of the CCT complex promotes accumulation of Δ133p53β aggregates and loss of Δ133p53β dependent cancer cell invasion. In contrast, association with p63 family members recruits Δ133p53β from aggregates increasing its intracellular mobility. Our study reveals novel mechanisms of cancer progression for p53 isoforms which are regulated through sequestration in aggregates and recruitment upon association with specific partners like p63 isoforms or CCT chaperone complex, that critically influence cancer cell features like EMT, migration and invasion

    Dephosphorylation of YB-1 is Required for Nuclear Localisation During G2 Phase of the Cell Cycle

    Get PDF
    Elevated levels of nuclear Y-box binding protein 1 (YB-1) are linked to poor prognosis in cancer. It has been proposed that entry into the nucleus requires specific proteasomal cleavage. However, evidence for cleavage is contradictory and high YB-1 levels are prognostic regardless of cellular location. Here, using confocal microscopy and mass spectrometry, we find no evidence of specific proteolytic cleavage. Doxorubicin treatment, and the resultant G2 arrest, leads to a significant increase in the number of cells where YB-1 is not found in the cytoplasm, suggesting that its cellular localisation is variable during the cell cycle. Live cell imaging reveals that the location of YB-1 is linked to progression through the cell cycle. Primarily perinuclear during G1 and S phases, YB-1 enters the nucleus as cells transition through late G2/M and exits at the completion of mitosis. Atomistic modelling and molecular dynamics simulations show that dephosphorylation of YB-1 at serine residues 102, 165 and 176 increases the accessibility of the nuclear localisation signal (NLS). We propose that this conformational change facilitates nuclear entry during late G2/M. Thus, the phosphorylation status of YB-1 determines its cellular location

    Extracts of Feijoa Inhibit Toll-Like Receptor 2 Signaling and Activate Autophagy Implicating a Role in Dietary Control of IBD

    Get PDF
    Inflammatory bowel disease (IBD) is a heterogeneous chronic inflammatory disease affecting the gut with limited treatment success for its sufferers. This suggests the need for better understanding of the different subtypes of the disease as well as nutritional interventions to compliment current treatments. In this study we assess the ability of a hydrophilic feijoa fraction (F3) to modulate autophagy a process known to regulate inflammation, via TLR2 using IBD cell lines

    Critical Role for Cold Shock Protein YB-1 in Cytokinesis

    Get PDF
    High levels of the cold shock protein Y-box-binding protein-1, YB-1, are tightly correlated with increased cell proliferation and progression. However, the precise mechanism by which YB-1 regulates proliferation is unknown. Here, we found that YB-1 depletion in several cancer cell lines and in immortalized fibroblasts resulted in cytokinesis failure and consequent multinucleation. Rescue experiments indicated that YB-1 was required for completion of cytokinesis. Using confocal imaging we found that YB-1 was essential for orchestrating the spatio-temporal distribution of the microtubules, β-actin and the chromosome passenger complex (CPC) to define the cleavage plane. We show that phosphorylation at six serine residues was essential for cytokinesis, of which novel sites were identified using mass spectrometry. Using atomistic modelling we show how phosphorylation at multiple sites alters YB-1 conformation, allowing it to interact with protein partners. Our results establish phosphorylated YB-1 as a critical regulator of cytokinesis, defining precisely how YB-1 regulates cell division

    Critical Role for Cold Shock Protein YB-1 in Cytokinesis

    Get PDF
    High levels of the cold shock protein Y-box-binding protein-1, YB-1, are tightly correlated with increased cell proliferation and progression. However, the precise mechanism by which YB-1 regulates proliferation is unknown. Here, we found that YB-1 depletion in several cancer cell lines and in immortalized fibroblasts resulted in cytokinesis failure and consequent multinucleation. Rescue experiments indicated that YB-1 was required for completion of cytokinesis. Using confocal imaging we found that YB-1 was essential for orchestrating the spatio-temporal distribution of the microtubules, β-actin and the chromosome passenger complex (CPC) to define the cleavage plane. We show that phosphorylation at six serine residues was essential for cytokinesis, of which novel sites were identified using mass spectrometry. Using atomistic modelling we show how phosphorylation at multiple sites alters YB-1 conformation, allowing it to interact with protein partners. Our results establish phosphorylated YB-1 as a critical regulator of cytokinesis, defining precisely how YB-1 regulates cell division

    Role of Inflammation in Pathophysiology of Colonic Disease: An Update

    No full text
    Diseases of the colon are a big health burden in both men and women worldwide ranging from acute infection to cancer. Environmental and genetic factors influence disease onset and outcome in multiple colonic pathologies. The importance of inflammation in the onset, progression and outcome of multiple colonic pathologies is gaining more traction as the evidence from recent research is considered. In this review, we provide an update on the literature to understand how genetics, diet, and the gut microbiota influence the crosstalk between immune and non-immune cells resulting in inflammation observed in multiple colonic pathologies. Specifically, we focus on four colonic diseases two of which have a more established association with inflammation (inflammatory bowel disease and colorectal cancer) while the other two have a less understood relationship with inflammation (diverticular disease and irritable bowel syndrome)

    Anti-inflammatory activity of fruit fractions in vitro, mediated through toll-like receptor 4 and 2 in the context of inflammatory bowel disease

    No full text
    Pattern recognition receptors such as Toll-Like Receptor 2 (TLR2) and 4 (TLR4) are important in detecting and responding to stress and bacterial stimuli. Defect or damage in the TLR2 and TLR4 pathways can lead to sustained inflammation, characteristic of inflammatory bowel disease (IBD). The goal of this study was to identify fruit fractions that can be tested further to develop them as complementary therapies for IBD. In order to do this, we identified fruit fractions that mediate their anti-inflammatory response through the TLR4 and TLR2 pathway. Human Embryonic Kidney (HEK)-hTLR4 and hTLR2 cells were stimulated with their respective ligands to induce inflammation. These cells were treated with one of the 12 fractionated fruits and the inflammatory effect measured. 10 of the fruits came up as anti-inflammatory in the hTLR4 assay and nine in the hTLR2 assays. Many of the fruit fractions mediated their anti-inflammatory actions either mainly in their hydrophobic fractions (such as elderberry) or hydrophilic fractions (such as red raspberry), or both. The strongest anti-inflammatory effects were seen for feijoa and blackberry. This study shows that fruits can have multiple fractions eliciting anti-inflammatory effects in a pathway specific manner. This suggests that the compounds found in fruits can act together to produce health benefits by way of reducing inflammation. Exploiting this property of fruits can help develop complimentary therapies for inflammatory diseases

    Onco-Preventive and Chemo-Protective Effects of Apple Bioactive Compounds

    No full text
    Cancer is one of the leading causes of death globally. Epidemiological studies have strongly linked a diet high in fruits to a lower incidence of cancer. Furthermore, extensive research shows that secondary plant metabolites known as phytochemicals, which are commonly found in fruits, have onco-preventive and chemo-protective effects. Apple is a commonly consumed fruit worldwide that is available all year round and is a rich source of phytochemicals. In this review, we summarize the association of apple consumption with cancer incidence based on findings from epidemiological and cohort studies. We further provide a comprehensive review of the main phytochemical patterns observed in apples and their bioavailability after consumption. Finally, we report on the latest findings from in vitro and in vivo studies highlighting some of the key molecular mechanisms targeted by apple phytochemicals in relation to inhibiting multiple ‘hallmarks of cancer’ that are important in the progression of cancer
    corecore