98 research outputs found

    Anchoring the CFRP strengthening of concrete bridge decks: A comparison of methods

    Get PDF
    Debonding failures are a common problem in concrete bridge decks strengthened with adhesively attached carbon-fibre reinforced polymer (CFRP) strips. Accordingly, in this study, rectangular concrete slabs strengthened with CFRP have been experimentally evaluated to simulate the strengthening of T-beam and box girder slabs. The resulting static load data have been used to compare the effects of four different anchoring methods in terms of crack distribution, deflection, reinforcing steel strain curve, and CFRP strain distribution. The most suitable bridge deck strengthening anchoring method has been then identified and analysed using extant strengthening design methods. The results show that the most practical anchoring method is the use of open CFRP strips attached with concentrated adhesive. The findings of this study indicate that when strengthening T-girder bridges, more than two CFRP anchorage strips should be evenly spaced within the extension of the anchorage length, while for box girder bridges, even more evenly spaced strips should be used. This research and its conclusions can be used as a reference for the improved design of bridge deck strengthening

    Anchoring the CFRP strengthening of concrete bridge decks: A comparison of methods

    Get PDF
    288-299Debonding failures are a common problem in concrete bridge decks strengthened with adhesively attached carbon-fibre reinforced polymer (CFRP) strips. Accordingly, in this study, rectangular concrete slabs strengthened with CFRP have been experimentally evaluated to simulate the strengthening of T-beam and box girder slabs. The resulting static load data have been used to compare the effects of four different anchoring methods in terms of crack distribution, deflection, reinforcing steel strain curve, and CFRP strain distribution. The most suitable bridge deck strengthening anchoring method has been then identified and analysed using extant strengthening design methods. The results show that the most practical anchoring method is the use of open CFRP strips attached with concentrated adhesive. The findings of this study indicate that when strengthening T-girder bridges, more than two CFRP anchorage strips should be evenly spaced within the extension of the anchorage length, while for box girder bridges, even more evenly spaced strips should be used. This research and its conclusions can be used as a reference for the improved design of bridge deck strengthening

    WRF (v4.0)–SUEWS (v2018c) coupled system: development, evaluation and application

    Get PDF
    The process of coupling the Surface Urban Energy and Water Scheme (SUEWS) into the Weather Research and Forecasting (WRF) model is presented, including pre-processing of model parameters to represent spatial variability in surface characteristics. Fluxes and mixed-layer height observations in the southern UK are used to evaluate a 2-week period in each season. Mean absolute errors, based on all periods, are smaller in residential Swindon than central London for turbulent sensible and latent heat fluxes (QH, QE) with greater skill on clear-sky days on both sites (for incoming and outgoing short- and long-wave radiation, QH and QE). Clear-sky seasonality is seen in the model performance: there is better absolute skill for QH and QE in autumn and winter, when there is a higher frequency of clear-sky days, than in spring and summer. As the WRF-modelled incoming short-wave radiation has large errors, we apply a bulk transmissivity derived from local observations to reduce the incoming short-wave radiation input to the land surface scheme – this could correspond to increased presence of aerosols in cities. We use the coupled WRF–SUEWS system to investigate impacts of the anthropogenic heat flux emissions on boundary layer dynamics by comparing areas with contrasting human activities (central–commercial and residential areas) in Greater London – larger anthropogenic heat emissions not only elevate the mixed-layer heights but also lead to a warmer and drier near-surface atmosphere

    Durvalumab with or without tremelimumab for patients with recurrent or metastatic squamous cell carcinoma of the head and neck: a systematic review and meta-analysis

    Get PDF
    ObjectiveHead and neck squamous cell carcinoma (HNSCC) ranks as the sixth most prevalent cancer worldwide, significantly impacting patients’ quality of life. Immune checkpoint inhibitors (ICI) have been employed in the treatment of recurrent/metastatic (R/M)-HNSCC patients. This meta-analysis aims to assess the efficacy and safety of durvalumab monotherapy compared to the combination of durvalumab and tremelimumab in R/M-HNSCC patients.MethodsRelevant studies were systematically searched in PubMed, Embase, and Cochrane Library databases. All articles comparing durvalumab monotherapy with the combination with durvalumab and tremelimumab in R/M-HNSCC treatment were included. Additionally, the references of identified studies were screened if necessary.ResultA total of 1298 patients from three studies comparing durvalumab with durvalumab and tremelimumab in treating R/M-HNSCC were include in this meta-analysis. Our findings revealed no significant difference in objective response rate (ORR) [odds ratio (OR): 1.15, 95% confidence interval (CI): 0.85 to 1.56, P = 0.36] and disease control rate (DCR) (OR=1.08, 95%CI: 0.86 to 1.37, P = 0.51). Similar outcomes were observed in overall survival (OS), progression-free survival (PFS), and duration of response (DoR). Regarding safety, there was no significant difference in the incidence of treatment-related adverse events (trAEs) between the two groups (OR=1.26, 95%CI: 0.81 to 1.94, P = 0.30). However, patients treated with the combination therapy exhibited a higher incidence of grade 3-4 trAEs (OR=1.93, 95%CI: 1.36 to 2.73, P = 0.0002) and a greater likelihood of discontinuing treatment due to trAEs (OR=2.07, 95%CI: 1.12 to 3.85, P = 0.02). There was no significant difference in the occurrence of severe trAEs leading to death (OR=1.36, 95%CI: 0.47 to 3.96, P = 0.57).ConclusionThis meta-analysis suggests that R/M-HNSCC patients receiving the combination of durvalumab and tremelimumab may achieve comparable outcomes in terms of ORR, DCR, OS, PFS, and DoR, without significant differences. However, the combination therapy is associated with a higher incidence of grade 3-4 trAEs and an increased likelihood of treatment discontinuation due to trAEs. These findings highlight the need for cautious consideration of the combination of durvalumab and tremelimumab in R/M-HNSCC patients, which should be further evaluated in high-quality studies

    OR-051 Exploration of Potential Integrated Biomarkers for Sports Monitoring Based on Metabolic Profiling

    Get PDF
    Objective Metabolomic analysis is extensively applied to identify sensitive and specific biomarkers capable of reflecting pathological processes and physical responses or adaptations. Exercise training leads to profound metabolic changes, manifested as detectable alterations of metabolite levels and significant perturbations of metabolic pathways in sera, urine, and rarely, in saliva. Several metabolites have been exploited as biomarkers for generally evaluating physical states in almost all sports. However, alterations of metabolic profile caused by specific sports would be heterogeneous. Thus, developments of new techniques are eagerly required to identify characteristic metabolites as unique biomarkers for specifically accessing training stimulus and sports performances. In the present work, we conducted both metabolic profiling and a binary logistic regression model (BRM) of biological fluids derived from rowing ergometer test with the following aims: 1) to examine changes of metabolite profiles and identify characteristic metabolites in the samples of sera, urine, and saliva; 2) to screen out potential integrated biomarkers for sports-specific monitoring. Methods A total of 11 rowers (6 male, 5 female; aged 15±1 years; 4±2 years rowing training) underwent an indoor 6000m rowing ergometer test. Samples of sera, urine and saliva were collected before and immediately after the test. 1D 1H NMR spectra were recorded with a Bruker Avance III 650 MHz NMR spectrometer. NMR spectra were processed and aligned, resonances of metabolites were assigned and confirmed, and metabolite levels were calculated based on NMR integrals. Multivariate statistical analysis was carried out using partial least-squares discrimination analysis (PLS-DA) to distinguish metabolic profiles between the groups. The validated PLS-DA model gave the variable importance in the projection (VIP) for a given metabolite. Moreover, inter-group comparisons of metabolite levels were quantitatively conducted using the paired-sample t-test. Then, we identified characteristic metabolites with VIP>1 in PLS-DA and p<0.05 in t-test. Furthermore, we screened out potential biomarkers based on the characteristic metabolites identified from the three types of biological fluids using the BRM (stepwise). Results The rowing training induced profound changes of metabolic profiles in serum and saliva samples rather than in urine samples. Totally, 44 metabolites were assigned in which 19, 20, and 19 metabolites were identified from serum, urine and saliva samples, respectively. Seven metabolites were shared by the three types of samples. Moreover, five characteristic metabolites (pyruvate, lactate, succinate, N-acetyl-L-cysteine, and acetone) were identified from the serum samples. The elevated levels of pyruvate, lactate and succinate suggested that, the rowing training evidently promoted both oxidative phosphorylation and glycolysis pathways. Furthermore, three characteristic metabolites (tyrosine, formate, and methanol) were identified from the saliva samples. Given that tyrosine is the precursor of dopamine, the increased level of salivary tyrosine in all rowers experiencing the test, suggesting that salivary tyrosine could be explored as a potential indicator closely related to nervous fatigue in the test. On the other hand, PLS-DA did not show observable distinction of metabolic profiles between the urine samples before and immediately after the test. Moreover, 20 urinary metabolites did not display detectable altered levels. We then established the BRM with the identified characteristic metabolites, from which we selected one optimal regression model based on serum pyruvate and salivary tyrosine (adjusted R square was 0.935, P<0.001), indicating that the two selected metabolites would efficiently reflect the metabolic alterations in the test. Conclusions As far as the 6000m rowing ergometer test is concerned, serum samples could be a preferred resource for assessing the changes of energy metabolism in the test, while urine samples might have a relatively lower sensitivity to exercise-induced metabolic responses. Even though metabolite levels in saliva samples are generally lower than those in serum and urine samples, some salivary metabolites potentially have higher sensitivities to exercise-induced metabolic responses. Thus, the integration of multiple biomarkers identified from different type of species could potentially provide more sensitive and specific manners to monitor physical states in sports and exercise. This work may be of benefit to the exploration of integrated biomarkers for sports-specific monitoring

    Radially oriented mesoporous TiO2 microspheres with single-crystal–like anatase walls for high-efficiency optoelectronic devices

    Get PDF
    Highly crystalline mesoporous materials with oriented configurations are in demand for high-performance energy conversion devices. We report a simple evaporation-driven oriented assembly method to synthesize three-dimensional open mesoporous TiO2 microspheres with a diameter of ~800 nm, well-controlled radially oriented hexagonal mesochannels, and crystalline anatase walls. The mesoporous TiO2 spheres have a large accessible surface area (112 m2/g), a large pore volume (0.164 cm3/g), and highly single-crystal–like anatase walls with dominant (101) exposed facets, making them ideal for conducting mesoscopic photoanode films. Dye-sensitized solar cells (DSSCs) based on the mesoporous TiO2 microspheres and commercial dye N719 have a photoelectric conversion efficiency of up to 12.1%. This evaporation-driven approach can create opportunities for tailoring the orientation of inorganic building blocks in the assembly of various mesoporous materials.State Key Basic Research Program of China (2013CB934104 and 2012CB224805), the National Science Foundation (21210004), the Science and Technology Commission of Shanghai Municipality (08DZ2270500), the Shanghai Leading Academic Discipline Project (B108), King Abdulaziz City for Science and Technology (project no. 29-280), and Deanship of Scientific Research, King Saud University–The International Highly Cited Research Group Program (IHCRG#14-102). Y.L. also acknowledges the Interdisciplinary Outstanding Doctoral Research Funding of Fudan University (EZH2203302/001)
    • …
    corecore