27 research outputs found

    Wave power extraction by an oscillating water column array embedded in comb-type breakwaters:Performance analysis and hydrodynamic mechanism

    Get PDF
    Cost-sharing, space-sharing, and multi-function can be achieved through integrating wave energy converters into coastal defense facilities. In this paper, we consider a periodical array of oscillating water columns (OWCs) embedded in the coast-based comb-type breakwater in the presence of the step bottom. Based on the linear potential flow theory and matched eigenfunction expansion method, a semi-analytical model for solving the diffraction and radiation problems of the periodic OWC array is developed. The mathematical model is verified using Haskind relations and energy conservation law. Parametrical studies are carried out to illustrate the hydrodynamic characteristics of the OWC array embedded in the comb-type breakwater. This study also reveals the constructive and destructive interference effects between the breakwater and OWCs. It is found that the wave amplification caused by the projecting caisson produces a constructive effect on the wave power extraction. However, the inherent strong wave reflection caused by the caisson array weakens the wave power extraction, particularly in the sensitive frequency range (i.e., 2 &lt; kh1 &lt; 5.5 in the present investigations).</p

    Progressive failure modelling and ductility demand of steel beam-to-column connections in fire

    Get PDF
    A numerical procedure has been developed to model the sequences of failure which can occur within steel beam-to-column connections under fire conditions. In this procedure two recent developments, a static-dynamic solution process and a general component-based connection element, have been combined within the software Vulcan in order to track the sequence of local failures of the connections which lead to structural progressive collapse in fire. In particular the procedure developed can be used to investigate the structural behaviour in fire, particularly the ductility and fracture of different parts of the steel-to-steel connections, and the influence of the connections on the progressive collapse resistance of steel frames in fire. In the component-based connection model, a connection is represented as an assembly of "bolt-rows" composed of components representing different zones of mechanical behaviour whose stiffness, strength, ductility and fracture under changing temperatures can be adequately represented for global modelling. The potential numerical instabilities induced by fractures of individual connection's components can be overcome by the use of alternate static and dynamic analyses. The transfer of data between the static and dynamic analyses allows a seamless alternation between these two procedures to take place. Accuracy and stability of the calculations can be ensured in the dynamic phase, provided that the time steps are set sufficiently small. This procedure has the capacity of tracking the sequence of local failures (fractures of connection components, detachment and motion of disengaging beams, etc.) which lead to final collapse. Following an illustrative case study of a two-bay by two-storey frame, the effect of ductility of connections on the collapse resistance of steel frames in fire is demonstrated in two case studies of a generic multi-storey frame. It is shown that the analytical process is an effective tool in tackling the numerical problems associated with the complex structural interactions and discontinuous failures which can affect a steel or composite frame in fire, potentially leading to progressive collapse. It can be seen that both tensile and compressive ductility in the connections make a contribution to the fire resistance of the beams. Preventing the detachment of steel beams in fire can be achieved by inducing greater ductility into their connections. Combined with appropriate component-based connection models, this procedure can be adopted in performance-based fire-resistant design to assess the ductility requirements of steel connections

    Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate- to low-temperature solid oxide fuel cells

    Get PDF
    Solid oxide fuel cells (SOFCs) offer high energy conversion, low noise, low pollutant emission, and low processing cost. Despite many advantages, SOFCs face a major challenge in competing with other types of fuel cells because of their high operating temperature. The necessity to reduce the operational temperature of SOFCs has led to the development of research into the materials and fabrication technology of fuel cells. The use of composite cathodes significantly reduces the cathode polarization resistance and expands the triple phase boundary area available for oxygen reduction. Powder preparation and composite cathode fabrication also affect the overall performance of composite cathodes and fuel cells. Among many types of cathode materials, lanthanum-based materials such as lanthanum strontium cobalt ferrite (La1-xSrxCo1-yFeyO3-δ) have recently been discovered to offer great compatibility with ceria-based electrolytes in performing as composite cathode materials for intermediate- to low-temperature SOFCs (IT-LTSOFCs). This paper reviews various ceria-based composite cathodes for IT-LTSOFCs and focuses on the aspects of progress and challenges in materials technology

    Effects of size and shape originated synergism of carbon nano fillers on the electrical and mechanical properties of conductive polymer composites

    No full text
    In this study, microstructural features, mechanical properties, and electrical conductivity behaviors of thermoplastic composites prepared by using of cyclic olefin copolymer (COC) as matrix and various types of carbon nano materials, expanded graphite (EG), carbon nanofiber (CNF), and multi walled carbon nanotubes (CNT) as conductive fillers were investigated. Effects of using of double and triple filler combinations on the electrical properties of composites were also quantified in detail by measuring the bulk resistance of samples under alternating current with an impedance spectrometer. The electrical percolation values of fillers were found to be 20, 10, and 5 phr for the series of composites prepared with the EG, CNF, and CNT, respectively. It was obtained that the bulk resistances of percolated samples were dramatically decreased from 10(14) ohm.cm to 10(3)-10(4) ohm.cm. On the other hand, it was also found that the using of double and triple filler combinations provided much lower (about 10(1) ohm.cm) bulk resistance which corresponded to higher conductivity values than the highly filled composites including of 30 and 40 phr of EG. Based on the DMA measurements and the quantifying of elastic modulus values of composites in the rubbery region, it was found that the reinforcing effects of carbon nano fillers on the elastic modulus of composites decreased in the order of CNT>CNF>EG, depending on the aspect ratio (A(f)) values of fillers into the matrix. (c) 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42313

    Development of Oleanane-Type Triterpenes as a New Class of HCV Entry Inhibitors

    No full text
    Development of hepatitis C virus (HCV) entry inhibitors represents an emerging approach that satisfies a tandem mechanism for use with other inhibitors in a multifaceted cocktail. By screening Chinese herbal extracts, oleanolic acid (<b>OA</b>) was found to display weak potency to inhibit HCV entry with an IC<sub>50</sub> of 10 μM. Chemical exploration of this triterpene compound revealed its pharmacophore requirement for blocking HCV entry, rings A, B, and E, are conserved while ring D is tolerant of some modifications. Hydroxylation at C-16 significantly enhanced its potency for inhibiting HCV entry with IC<sub>50</sub> at 1.4 μM. Further modification by conjugation of this new lead with a disaccharide at 28-COOH removed the undesired hemolytic effect and, more importantly, increased its potency by ∼5-fold (<b>54a</b>, IC<sub>50</sub> 0.3 μM). Formation of a triterpene dimer via a linker bearing triazole (<b>70</b>) dramatically increased its potency with IC<sub>50</sub> at ∼10 nM. Mechanistically, such functional triterpenes interrupt the interaction between HCV envelope protein E2 and its receptor CD81 via binding to E2, thus blocking virus and host cell recognition. This study establishes the importance of triterpene natural products as new leads for the development of potential HCV entry inhibitors
    corecore