101,330 research outputs found

    A Test of SU(15) at HERA Using The HELAS Program

    Get PDF
    A possible SU(15) process at HERA is investigated. The process that we consider is e^- P\ra \bar\nu_e \mu^- \mu^- +anything through the exchange of new heavy gauge bosons X−X^- and X−−X^{--} which are predicted in SU(15). This process produces two easily observable like-sign muons in the final state. The cross section of this process is calculated by using HELAS and VEGAS programs, and PDF-library functions. The cross section turns out to be small to be observed in near future.Comment: 5 pages in latex with 4 figure

    Quantum sensing of rotation velocity based on transverse field Ising model

    Full text link
    We study a transverse-field Ising model (TFIM) in a rotational reference frame. We find that the effective Hamiltonian of the TFIM of this system depends on the system's rotation velocity. Since the rotation contributes an additional transverse field, the dynamics of TFIM sensitively responses to the rotation velocity at the critical point of quantum phase transition. This observation means that the TFIM can be used for quantum sensing of rotation velocity that can sensitively detect rotation velocity of the total system at the critical point. It is found that the resolution of the quantum sensing scheme we proposed is characterized by the half-width of Loschmidt echo of the dynamics of TFIM when it couples to a quantum system S. And the resolution of this quantum sensing scheme is proportional to the coupling strength \delta between the quantum system S and the TFIM, and to the square root of the number of spins N belonging the TFIM.Comment: 6 pages,6 figure

    The angular momentum of a magnetically trapped atomic condensate

    Full text link
    For an atomic condensate in an axially symmetric magnetic trap, the sum of the axial components of the orbital angular momentum and the hyperfine spin is conserved. Inside an Ioffe-Pritchard trap (IPT) whose magnetic field (B-field) is not axially symmetric, the difference of the two becomes surprisingly conserved. In this paper we investigate the relationship between the values of the sum/difference angular momentums for an atomic condensate inside a magnetic trap and the associated gauge potential induced by the adiabatic approximation. Our result provides significant new insight into the vorticity of magnetically trapped atomic quantum gases.Comment: 4 pages, 1 figure

    Onset of unsteady horizontal convection in rectangle tank at Pr=1Pr=1

    Full text link
    The horizontal convection within a rectangle tank is numerically simulated. The flow is found to be unsteady at high Rayleigh numbers. There is a Hopf bifurcation of RaRa from steady solutions to periodic solutions, and the critical Rayleigh number RacRa_c is obtained as Rac=5.5377×108Ra_c=5.5377\times 10^8 for the middle plume forcing at Pr=1Pr=1, which is much larger than the formerly obtained value. Besides, the unstable perturbations are always generated from the central jet, which implies that the onset of instability is due to velocity shear (shear instability) other than thermally dynamics (thermal instability). Finally, Paparella and Young's [J. Fluid Mech. 466 (2002) 205] first hypotheses about the destabilization of the flow is numerically proved, i.e. the middle plume forcing can lead to a destabilization of the flow.Comment: 4pages, 6 figures, extension of Chin. Phys. Lett. 2008, 25(6), in pres

    Single-particle machine for quantum thermalization

    Full text link
    The long time accumulation of the \textit{random} actions of a single particle "reservoir" on its coupled system can transfer some temperature information of its initial state to the coupled system. This dynamic process can be referred to as a quantum thermalization in the sense that the coupled system can reach a stable thermal equilibrium with a temperature equal to that of the reservoir. We illustrate this idea based on the usual micromaser model, in which a series of initially prepared two-level atoms randomly pass through an electromagnetic cavity. It is found that, when the randomly injected atoms are initially prepared in a thermal equilibrium state with a given temperature, the cavity field will reach a thermal equilibrium state with the same temperature as that of the injected atoms. As in two limit cases, the cavity field can be cooled and "coherently heated" as a maser process, respectively, when the injected atoms are initially prepared in ground and excited states. Especially, when the atoms in equilibrium are driven to possess some coherence, the cavity field may reach a higher temperature in comparison with the injected atoms. We also point out a possible experimental test for our theoretical prediction based on a superconducting circuit QED system.Comment: 9 pages,4 figures
    • …
    corecore