5 research outputs found

    Development of Organic-Inorganic Hybrid Optical Gas Sensors for the Non-Invasive Monitoring of Pathogenic Bacteria

    No full text
    Hybrid optical gas sensors, based on different organic and inorganic materials, are proposed in this paper, with the aim of using them as optical artificial nose systems. Three types of organic and inorganic dyes, namely zinc-porphyrin, manganese-porphyrin, and zinc-phthalocyanine, were used as gas sensing materials to fabricate a thin-film coating on glass substrates. The performance of the gas sensor was enhanced by a thermal treatment process. The optical absorption spectra and morphological structure of the sensing films were confirmed by UV-Vis spectrophotometer and atomic force microscope, respectively. The optical gas sensors were tested with various volatile compounds, such as acetic acid, acetone, ammonia, ethanol, ethyl acetate, and formaldehyde, which are commonly found to be released during the growth of bacteria. These sensors were used to detect and discriminate between the bacterial odors of three pathogenic species (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa) grown in Luria-Bertani medium. Based on a pattern recognition (PARC) technique, we showed that the proposed hybrid optical gas sensors can discriminate among the three pathogenic bacterial odors and that the volatile organic compound (VOC) odor pattern of each bacterium was dependent on the phase of bacterial growth

    Dosimetric Performance of Poly(vinyl alcohol)/Silver Nanoparticles Hybrid Nanomaterials for Colorimetric Sensing of Gamma Radiation

    No full text
    A colorimetric liquid sensor based on a poly(vinyl alcohol)/silver nanoparticle (PVA/AgNPs) hybrid nanomaterial was developed for gamma radiation in the range of 0–100 Gy. In this study, gamma rays (Cobalt-60 source) triggered the aggregation of AgNPs in a PVA/silver nitrate (AgNO3) hybrid solution. The color of this solution visibly changed from colorless to dark yellow. Absorption spectra of the PVA/AgNPs solution were analyzed by UV-Vis spectrophotometry in the range of 350–800 nm. Important parameters, such as pH and AgNO3 concentration were optimized. The accuracy, sensitivity, stability, and uncertainty of the sensor were investigated and compared to the reference standard dosimeter. Based on the spectrophotometric results, an excellent positive linear correlation (r = 0.998) between the absorption intensity and received dose was found. For the accuracy, the intra-class correlation coefficient (ICC) between the PVA/AgNPs sensor and the standard Fricke dosimeter was 0.998 (95%CI). The sensitivity of this sensor was 2.06 times higher than the standard dosimeter. The limit of detection of the liquid dosimeter was 13.4 Gy. Moreover, the overall uncertainty of this sensor was estimated at 4.962%, in the acceptable range for routine standard dosimeters (<6%). Based on its dosimetric performance, this new PVA/AgNPs sensor has potential for application as an alternative gamma sensor for routine dose monitoring in the range of 13.4–100 Gy
    corecore