1,648 research outputs found

    The spherical symmetry Black hole collapse in expanding universe

    Full text link
    The spherical symmetry Black holes are considered in expanding background. The singularity line and the marginally trapped tube surface behavior are discussed. In particular, we address the conditions whether dynamical horizon forms for these cosmological black holes. We also discuss about the cosmological constant effect on these black hole and the redshift of the light which comes from the marginally trapped tube surface.Comment: 7 pages, 3 figures. Accepted for publication in International Journal of Modern Physics D (IJMPD). arXiv admin note: text overlap with arXiv:gr-qc/0308033 and arXiv:gr-qc/030611

    The international symposia on career development and public policy: retrospect and prospect

    Get PDF
    Between 1999 and 2011, seven international symposia on career development and public policy were held at various venues across the world, and an International Centre was established to support and maintain continuity between these events. These developments were closely intertwined with a number of other significant international developments. The origins of the symposia are described; their core design features are defined; their evolution is outlined and reviewed; and their impact is assessed. This article concludes with a discussion of the prospects for future symposia and for the International Centre

    The ‘Blueprint’ framework for career management skills: a critical exploration

    Get PDF
    This article examines the Blueprint framework for career management skills as it has been revealed across sequential implementations in the USA, Canada and Australia. It is argued that despite its lack of an empirical basis, the framework forms a useful and innovative means through which career theory, practice and policy can be connected. The framework comprises both core elements (learning areas, learning model and levels) and contextual elements (resources, community of practice, service delivery approach and policy connection). Each of these elements is explored

    Oblique propagation of arbitrary amplitude electron acoustic solitary waves in magnetized kappa-distributed plasmas

    Full text link
    The linear and nonlinear properties of large amplitude electron-acoustic waves are investigated in a magnetized plasma comprising two distinct electron populations (hot and cold) and immobile ions. The hot electrons are assumed to be in a non-Maxwellian state, characterized by an excess of superthermal particles, here modelled by a kappa-type long-tailed distribution function. Waves are assumed to propagate obliquely to the ambient magnetic field. Two types of electrostatic modes are shown to exist in the linear regime, and their properties are briefly analyzed. A nonlinear pseudopotential type analysis reveals the existence of large amplitude electrostatic solitary waves and allows for an investigation of their propagation characteristics and existence domain, in terms of the soliton speed (Mach number). The effects of the key plasma configuration parameters, namely, the superthermality index and the cold electron density, on the soliton characteristics and existence domain, are studied. The role of obliqueness and magnetic field are discussed.Comment: Submitted to Plasma Physics and Controlled Fusio

    The changing UK careers landscape : tidal waves, turbulence and transformation

    Get PDF
    This article explores how the UK careers landscape in each of the four home nations is changing in response to neo-liberal policies. In this context, careers services are increasingly under pressure to demonstrate their added value, impact and returns on investment. As fiscal arrangements tighten and governments state their preferences and priorities for national careers services, differing strategic responses are beginning to emerge. A quasi-market, experimental approach is now the dominant discourse in England, in contrast to differing and complementary arrangements in Northern Ireland, Scotland and Wales. The article suggests that insofar as these developments are transforming national careers services, they are also creating significant challenges which require new forms of policy imagery and imagination for high-impact, all-age careers services

    Electron-Ion Recombination Rate Coefficients and Photoionization Cross Sections for Astrophysically Abundant Elements. V. Relativistic calculations for Fe XXIV and Fe XXV for X-ray modeling

    Get PDF
    Photoionization and recombination cross sections and rate coefficients are calculated for Li-like Fe XXIV and He-like Fe XXV using the Breit-Pauli R-matrix (BPRM) method. A complete set of total and level-specific parameters is obtained to enable X-ray photoionization and spectral modeling. The ab initio calculations for the unified (e + ion) recombination rate coefficients include both the non-resonant and the resonant recombination (radiative and di-electronic recombination, RR and DR, respectively) for (e + Fe XXV) -> Fe XXIV and (e + Fe XXVI) -> Fe XXV. The level specific rates are computed for all fine structure levels up to n = 10, enabling accurate computation of recombination-cascade matrices and effective rates for the X-ray lines. The total recombination rate coefficients for both Fe XXIV and Fe XXV differ considerably, by several factors, from the sum of RR and DR rates currently used to compute ionization fractions in astrophysical models. As the photoionization/recombination calculations are carried out using an identical eigenfunction expansion, the cross sections for both processes are theoretically self-consistent; the overall uncertainty is estimated to be about 10-20%. All data for Fe XXIV and Fe XXV (and also for H-like Fe XXVI, included for completeness) are available electronically.Comment: 31 pages, 10fug

    Large-scale Breit-Pauli R-matrix calculations for transition probabilities of Fe V

    Get PDF
    Ab initio theoretical calculations are reported for the electric (E1) dipole allowed and intercombination fine structure transitions in Fe V using the Breit-Pauli R-matrix (BPRM) method. We obtain 3865 bound fine structure levels of Fe V and 1.46x1061.46 x 10^6 oscillator strengths, Einstein A-coefficients and line strengths. In addition to the relativistic effects, the intermediate coupling calculations include extensive electron correlation effects that represent the complex configuration interaction (CI). Fe V bound levels are obtained with angular and spin symmetries SLπSL\pi and JπJ\pi of the (e + Fe VI) system such that 2S+12S+1 = 5,3,1, LL \leq 10, J8J \leq 8. The bound levels are obtained as solutions of the Breit-Pauli (e + ion) Hamiltonian for each JπJ\pi, and are designated according to the `collision' channel quantum numbers. A major task has been the identification of these large number of bound fine structure levels in terms of standard spectroscopic designations. A new scheme, based on the analysis of quantum defects and channel wavefunctions, has been developed. The identification scheme aims particularly to determine the completeness of the results in terms of all possible bound levels for applications to analysis of experimental measurements and plasma modeling. An uncertainty of 10-20% for most transitions is estimated.Comment: 31 pages, 1 figure, Physica Scripta (in press

    Academic motherhood and fieldwork: Juggling time, emotions and competing demands

    Get PDF
    The idea and practice of going ‘into the field’ to conduct research and gather data is a deeply rooted aspect of Geography as a discipline. For global North Development Geographers, amongst others, this usually entails travelling to, and spending periods of time in, often far-flung parts of the global South. Forging a successful academic career as a Development Geographer in the UK, is therefore to some extent predicated on mobility. This paper aims to critically engage with the gendered aspects of this expected mobility, focusing on the challenges and time constraints that are apparent when conducting overseas fieldwork as a mother, unaccompanied by her children. The paper emphasises the emotion work that is entailed in balancing the competing demands of overseas fieldwork and mothering, and begins to think through the implications of these challenges in terms of the types of knowledge we produce, as well as in relation to gender equality within the academy

    The TIGR Gene Indices: clustering and assembling EST and known genes and integration with eukaryotic genomes

    Get PDF
    Although the list of completed genome sequencing projects has expanded rapidly, sequencing and analysis of expressed sequence tags (ESTs) remain a primary tool for discovery of novel genes in many eukaryotes and a key element in genome annotation. The TIGR Gene Indices (http://www.tigr.org/tdb/tgi) are a collection of 77 species-specific databases that use a highly refined protocol to analyze gene and EST sequences in an attempt to identify and characterize expressed transcripts and to present them on the Web in a user-friendly, consistent fashion. A Gene Index database is constructed for each selected organism by first clustering, then assembling EST and annotated cDNA and gene sequences from GenBank. This process produces a set of unique, high-fidelity virtual transcripts, or tentative consensus (TC) sequences. The TC sequences can be used to provide putative genes with functional annotation, to link the transcripts to genetic and physical maps, to provide links to orthologous and paralogous genes, and as a resource for comparative and functional genomic analysis

    Visibility Representations of Boxes in 2.5 Dimensions

    Full text link
    We initiate the study of 2.5D box visibility representations (2.5D-BR) where vertices are mapped to 3D boxes having the bottom face in the plane z=0z=0 and edges are unobstructed lines of sight parallel to the xx- or yy-axis. We prove that: (i)(i) Every complete bipartite graph admits a 2.5D-BR; (ii)(ii) The complete graph KnK_n admits a 2.5D-BR if and only if n19n \leq 19; (iii)(iii) Every graph with pathwidth at most 77 admits a 2.5D-BR, which can be computed in linear time. We then turn our attention to 2.5D grid box representations (2.5D-GBR) which are 2.5D-BRs such that the bottom face of every box is a unit square at integer coordinates. We show that an nn-vertex graph that admits a 2.5D-GBR has at most 4n6n4n - 6 \sqrt{n} edges and this bound is tight. Finally, we prove that deciding whether a given graph GG admits a 2.5D-GBR with a given footprint is NP-complete. The footprint of a 2.5D-BR Γ\Gamma is the set of bottom faces of the boxes in Γ\Gamma.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    corecore