3,370 research outputs found

    PESSTO monitoring of SN 2012hn: further heterogeneity among faint type I supernovae

    Get PDF
    We present optical and infrared monitoring data of SN 2012hn collected by the Public ESO Spectroscopic Survey for Transient Objects (PESSTO). We show that SN 2012hn has a faint peak magnitude (MR ~ -15.7) and shows no hydrogen and no clear evidence for helium in its spectral evolution. Instead, we detect prominent Ca II lines at all epochs, which relates this transient to previously described 'Ca-rich' or 'gap' transients. However, the photospheric spectra (from -3 to +32 d with respect to peak) of SN 2012hn show a series of absorption lines which are unique, and a red continuum that is likely intrinsic rather than due to extinction. Lines of Ti II and Cr II are visible. This may be a temperature effect, which could also explain the red photospheric colour. A nebular spectrum at +150d shows prominent CaII, OI, CI and possibly MgI lines which appear similar in strength to those displayed by core-collapse SNe. To add to the puzzle, SN 2012hn is located at a projected distance of 6 kpc from an E/S0 host and is not close to any obvious starforming region. Overall SN 2012hn resembles a group of faint H-poor SNe that have been discovered recently and for which a convincing and consistent physical explanation is still missing. They all appear to explode preferentially in remote locations offset from a massive host galaxy with deep limits on any dwarf host galaxies, favouring old progenitor systems. SN 2012hn adds heterogeneity to this sample of objects. We discuss potential explosion channels including He-shell detonations and double detonations of white dwarfs as well as peculiar core-collapse SNe.Comment: 14 pages, 14 figures, accepted to MNRAS on 14/10/201

    The Intrinsic Origin of Spin Echoes in Dipolar Solids Generated by Strong Pi Pulses

    Full text link
    In spectroscopy, it is conventional to treat pulses much stronger than the linewidth as delta-functions. In NMR, this assumption leads to the prediction that pi pulses do not refocus the dipolar coupling. However, NMR spin echo measurements in dipolar solids defy these conventional expectations when more than one pi pulse is used. Observed effects include a long tail in the CPMG echo train for short delays between pi pulses, an even-odd asymmetry in the echo amplitudes for long delays, an unusual fingerprint pattern for intermediate delays, and a strong sensitivity to pi-pulse phase. Experiments that set limits on possible extrinsic causes for the phenomena are reported. We find that the action of the system's internal Hamiltonian during any real pulse is sufficient to cause the effects. Exact numerical calculations, combined with average Hamiltonian theory, identify novel terms that are sensitive to parameters such as pulse phase, dipolar coupling, and system size. Visualization of the entire density matrix shows a unique flow of quantum coherence from non-observable to observable channels when applying repeated pi pulses.Comment: 24 pages, 27 figures. Revised from helpful referee comments. Added new Table IV, new paragraphs on pages 3 and 1

    The Supernova Legacy Survey 3-year sample: Type Ia Supernovae photometric distances and cosmological constraints

    Full text link
    We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 < z < 1.1) discovered during the first three years of the Supernova Legacy Survey (SNLS). These events were detected and their multi-colour light curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. A flat LambdaCDM cosmological fit to 231 SNLS high redshift Type Ia supernovae alone gives Omega_M = 0.211 +/- 0.034(stat) +/- 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometric calibration. Systematic uncertainties from light curve fitters come next with a total contribution of +/- 0.026 on Omega_M. No clear evidence is found for a possible evolution of the slope (beta) of the colour-luminosity relation with redshift.Comment: (The SNLS Collaboration) 40 pages, 32 figures, Accepted in A&

    TeV Gamma-Ray Sources from a Survey of the Galactic Plane with Milagro

    Full text link
    A survey of Galactic gamma-ray sources at a median energy of ~20 TeV has been performed using the Milagro Gamma Ray Observatory. Eight candidate sources of TeV emission are detected with pre-trials significance >4.5σ>4.5\sigma in the region of Galactic longitude l[30,220]l\in[30^\circ,220^\circ] and latitude b[10,10]b\in[-10^\circ,10^\circ]. Four of these sources, including the Crab nebula and the recently published MGRO J2019+37, are observed with significances >4σ>4\sigma after accounting for the trials involved in searching the 3800 square degree region. All four of these sources are also coincident with EGRET sources. Two of the lower significance sources are coincident with EGRET sources and one of these sources is Geminga. The other two candidates are in the Cygnus region of the Galaxy. Several of the sources appear to be spatially extended. The fluxes of the sources at 20 TeV range from ~25% of the Crab flux to nearly as bright as the Crab.Comment: Submitted to Ap

    Milagro Constraints on Very High Energy Emission from Short Duration Gamma-Ray Bursts

    Full text link
    Recent rapid localizations of short, hard gamma-ray bursts (GRBs) by the Swift and HETE satellites have led to the observation of the first afterglows and the measurement of the first redshifts from this type of burst. Detection of >100 GeV counterparts would place powerful constraints on GRB mechanisms. Seventeen short duration (< 5 s) GRBs detected by satellites occurred within the field of view of the Milagro gamma-ray observatory between 2000 January and 2006 December. We have searched the Milagro data for >100 GeV counterparts to these GRBs and find no significant emission correlated with these bursts. Due to the absorption of high-energy gamma rays by the extragalactic background light (EBL), detections are only expected for redshifts less than ~0.5. While most long duration GRBs occur at redshifts higher than 0.5, the opposite is thought to be true of short GRBs. Lack of a detected VHE signal thus allows setting meaningful fluence limits. One GRB in the sample (050509b) has a likely association with a galaxy at a redshift of 0.225, while another (051103) has been tentatively linked to the nearby galaxy M81. Fluence limits are corrected for EBL absorption, either using the known measured redshift, or computing the corresponding absorption for a redshift of 0.1 and 0.5, as well as for the case of z=0.Comment: Accepted for publication in the Astrophysical Journa

    The Complete Star Formation History of the Universe

    Full text link
    The determination of the star-formation history of the Universe is a key goal of modern cosmology, as it is crucial to our understanding of how structure in the Universe forms and evolves. A picture has built up over recent years, piece-by-piece, by observing young stars in distant galaxies at different times in the past. These studies indicated that the stellar birthrate peaked some 8 billion years ago, and then declined by a factor of around ten to its present value. Here we report on a new study which obtains the complete star formation history by analysing the fossil record of the stellar populations of 96545 nearby galaxies. Broadly, our results support those derived from high-redshift galaxies elsewhere in the Universe. We find, however, that the peak of star formation was more recent - around 5 billion years ago. Our study also shows that the bigger the stellar mass of the galaxy, the earlier the stars were formed. This striking result indicates a very different formation history for high- and low-mass formation.Comment: Accepted by Nature. Press embargo until publishe

    The high-energy gamma-ray fluence and energy spectrum of GRB 970417a from observations with Milagrito

    Get PDF
    Evidence of TeV emission from GRB970417a has been previously reported using data from the Milagrito detector. Constraints on the TeV fluence and the energy spectrum are now derived using additional data from a scaler system that recorded the rate of signals from the Milagrito photomultipliers. This analysis shows that if emission from GRB970417a has been observed, it must contain photons with energies above 650 GeV. Some consequences of this observation are discussed.Comment: Submitted to the Astrophysical Journa

    Discovery of Localized Regions of Excess 10-TeV Cosmic Rays

    Full text link
    An analysis of 7 years of Milagro data performed on a 10-degree angular scale has found two localized regions of excess of unknown origin with greater than 12 sigma significance. Both regions are inconsistent with gamma-ray emission with high confidence. One of the regions has a different energy spectrum than the isotropic cosmic-ray flux at a level of 4.6 sigma, and it is consistent with hard spectrum protons with an exponential cutoff, with the most significant excess at ~10 TeV. Potential causes of these excesses are explored, but no compelling explanations are found.Comment: Submitted to PhysRevLet

    Search for very high energy gamma-rays from WIMP annihilations near the Sun with the Milagro Detector

    Full text link
    The neutralino, the lightest stable supersymmetric particle, is a strong theoretical candidate for the missing astronomical ``dark matter''. A profusion of such neutralinos can accumulate near the Sun when they lose energy upon scattering and are gravitationally captured. Pair-annihilations of those neutralinos may produce very high energy (VHE, above 100GeV100 GeV) gamma-rays. Milagro is an air shower array which uses the water Cherenkov technique to detect extensive air showers and is capable of observing VHE gamma-rays from the direction of the Sun with an angular resolution of 0.750.75^{\circ}. Analysis of Milagro data with an exposure to the Sun of 1165 hours presents the first attempt to detect TeV gamma-rays produced by annihilating neutralinos captured by the Solar system and shows no statistically significant signal. Resulting limits that can be set on gamma-ray flux due to near-Solar neutralino annihilations and on neutralino cross-section are presented

    Observation of TeV Gamma Rays from the Crab Nebula with Milagro Using a New Background Rejection Technique

    Full text link
    The recent advances in TeV gamma-ray astronomy are largely the result of the ability to differentiate between extensive air showers generated by gamma rays and hadronic cosmic rays. Air Cherenkov telescopes have developed and perfected the "imaging" technique over the past several decades. However until now no background rejection method has been successfully used in an air shower array to detect a source of TeV gamma rays. We report on a method to differentiate hadronic air showers from electromagnetic air showers in the Milagro gamma ray observatory, based on the ability to detect the energetic particles in an extensive air shower. The technique is used to detect TeV emission from the Crab nebula. The flux from the Crab is estimated to be 2.68(+-0.42stat +- 1.4sys) x10^{-7} (E/1TeV)^{-2.59} m^{-2} s^{-1} TeV^{-1}, where the spectral index is assumed to be as given by the HEGRA collaboration.Comment: 22 pages, 11 figures, submitted to Astrophysical Journa
    corecore