30,719 research outputs found
A comparison of corrosion-resistant steel (18 percent chromium - 8 percent nickel) and aluminum alloy (24st)
In the selection of materials for aircraft application, it is not enough to make the selection on a strength-weight basis alone. A strength-weight comparison is significant but other factors must be considered, for while a material with a high ratio of strength to weight may be perfectly satisfactory for one use, it may be totally unfitted for another. It is essential, among other things, that the probable nature, magnitude, and direction of the principal stresses be given special consideration. The following analysis has therefore been made with this in mind. An attempt has been made to cover insofar as possible the major, but not all the points, that a designer would consider in the use of "18-8", as it is commonly referred to, and 24ST aluminum alloy, as applied to aircraft. 24ST was selected for this comparison as it has practically replaced 17ST for aircraft construction and it appears to have the best combination of properties of the alloys now available for this purpose. The cost of fabrication has not been considered
A cryocooler for applications requiring low magnetic and mechanical interference
A very low-power, low-interference Stirling cryocooler is being developed based on principles and techniques described in several previous publications over the last four years. It differs in several important details from those built previously. It uses a tapered displacer based upon an analytical optimization procedure. The displacer is driven by an auxiliary piston and cylinder (rather than by mechanical linkage) using some of the working fluid itself to provide the driving force. This provides smooth, vibration-free motion, and, more importantly, allows complete mechanical and spatial separation of the cryostat from the pressure-wave generator. Either of two different pressure-wave generators can be used. One is a non-contaminating, unlubricated ceramic piston and cylinder. The other is a compressed-air-operated rubber diaphragm with motor-driven valves to cycle the pressure between appropriate limits
A study of noise metric and tone correction accuracy
Methods currently used to measure human response to aircraft flyover noise were investigated. Response to high level aircraft noise usually experienced outdoors was obtained. Response to aircraft flyover noise typical of indoor exposure was also investigated. It was concluded that current methods for evaluating response to aircraft flyover are more accurate for outdoor noise
Response to actual and simulated recordings of conventional takeoff and landing jet aircraft
Comparability between noise characteristics of synthesized recordings of aircraft in flight and actual recordings were investigated. Although the synthesized recordings were more smoothly time-varying than the actual recordings and the synthesizer could not produce a comb-filter effect that was present in the actual recordings, results supported the conclusion that annoyance response is comparable to the synthesized and actual recordings. A correction for duration markedly improved the validity of engineering calculation procedures designed to measure noise annoyance. Results led to the conclusion that the magnitude estimation psychophysical method was a highly reliable approach for evaluating engineering calculation procedures designed to measure noise annoyance. For repeated presentations of pairs of actual recordings, differences between judgment results for identical signals ranged from 0.0 to 0.5 db
An approach to optimization of low-power Stirling cryocoolers
A method for optimizing the design (shape of the displacer) of low power Stirling cryocoolers relative to the power required to operate the systems is described. A variational calculation which includes static conduction, shuttle and radiation losses, as well as regenerator inefficiency, was completed for coolers operating in the 300 K to 10 K range. While the calculations apply to tapered displacer machines, comparison of the results with stepped displacer cryocoolers indicates reasonable agreement
Self-contained breathing apparatus
A self-contained breathing apparatus with automatic redundant fluid pressure controls and a facemask mounted low pressure whistle alarm is described. The first stage of the system includes pair of pressure regulators connected in parallel with different outlet pressures, both of which reduce the pressure of the stored supply gas to pressures compatible with the second stage breathing demand regulator. A primary regulator in the first stage delivers a low output pressure to the demand regulator. In the event of a failure closed condition of the primary regulator an automatic transfer valve switches on the backup regulator. A warning that the supply pressure has been depleted is also provided by a supply pressure actuated transfer valve which transfers the output of the first stage pressure regulators from the primary to the backup regulator. The alarm is activated in either the failure closed condition or if the supply pressure is reduced to a dangerously low level
Laser-velocimeter flow-field measurements of an advanced turboprop
Non-intrusive measurements of velocity about a spinner-propeller-nacelle configuration at a Mach number of 0.8 were performed. A laser velocimeter, specifically developed for these measurements in the NASA Lewis 8-foot by 6-foot Supersonic Wind Tunnel, was used to measure the flow-field of the advanced swept SR-3 turboprop. The laser velocimeter uses an argon ion laser and a 2-color optics system to allow simultaneous measurements of 2-components of velocity. The axisymmetric nature of the propeller-nacelle flow-field permits two separate 2 dimensonal measurements to be combined into 3 dimensional velocity data. Presented are data ahead of and behind the prop blades and also a limited set in between the blades. Aspects of the observed flow-field such as the tip vortex are discussed
Proctolin and an Endogenous Proctolin-Like Peptide Enhance the Contractility of the Limulus Heart
Synthetic proctolin increases the force but not the rate of heart contractions of Limulus in a time- and dose-dependent manner. The threshold of this effect is 3 × 10−10M and the ED50 is approximately 10−8M. At concentrations up to 10−7 M, proctolin has no effect on the rhythmic electrical activity of the isolated cardiac ganglion, and it does not change the simple and compound postsynaptic potentials recorded at the cardiac neuromuscular junction. Proctolin acts directly on the cardiac muscle fibres. Electrically stimulated myocardia show a proctolin-induced increase in contraction amplitude with the same concentration dependence as the intact heart. A compound with an apparent molecular weight of 700–800 occurs in the Limulus nervous system, particularly in the cardiac ganglion. This compound resembles proctolin in being heat-stable, resistant to trypsin and chymotrypsin cleavage, and losing activity in a time-dependent manner in response to treatment with leucine aminopeptidase or pronase. This peptide induces spontaneous contractions and a contracture of the cockroach hindgut in a manner similar to proctolin. Moreover, the Limulus inotropic peptide, like proctolin, increases the force of contraction of the Limulus heart without affecting beat frequency. It is concluded that an endogenous, proctolin-like peptide is an inotropic modulator of the Limulus heart, acting directly on the muscle fibres and not affecting cardiac ganglion activity
- …