8 research outputs found

    System modelling of very low Earth orbit satellites for Earth observation

    Get PDF
    The operation of satellites in very low Earth orbit (VLEO) has been linked to a variety of benefits to both the spacecraft platform and mission design. Critically, for Earth observation (EO) missions a reduction in altitude can enable smaller and less powerful payloads to achieve the same performance as larger instruments or sensors at higher altitude, with significant benefits to the spacecraft design. As a result, renewed interest in the exploitation of these orbits has spurred the development of new technologies that have the potential to enable sustainable operations in this lower altitude range. In this paper, system models are developed for (i) novel materials that improve aerodynamic performance enabling reduced drag or increased lift production and resistance to atomic oxygen erosion and (ii) atmosphere-breathing electric propulsion (ABEP) for sustained drag compensation or mitigation in VLEO. Attitude and orbit control methods that can take advantage of the aerodynamic forces and torques in VLEO are also discussed. These system models are integrated into a framework for concept-level satellite design and this approach is used to explore the system-level trade-offs for future EO spacecraft enabled by these new technologies. A case-study presented for an optical very-high resolution spacecraft demonstrates the significant potential of reducing orbital altitude using these technologies and indicates possible savings of up to 75% in system mass and over 50% in development and manufacturing costs in comparison to current state-of-the-art missions. For a synthetic aperture radar (SAR) satellite, the reduction in mass and cost with altitude were shown to be smaller, though it was noted that currently available cost models do not capture recent commercial advancements in this segment. These results account for the additional propulsive and power requirements needed to sustain operations in VLEO and indicate that future EO missions could benefit significantly by operating in this altitude range. Furthermore, it is shown that only modest advancements in technologies already under development may begin to enable exploitation of this lower altitude range. In addition to the upstream benefits of reduced capital expense and a faster return on investment, lower costs and increased access to high quality observational data may also be passed to the downstream EO industry, with impact across a wide range of commercial, societal, and environmental application areas

    System modelling of very low Earth orbit satellites for Earth observation

    Get PDF
    The operation of satellites in very low Earth orbit (VLEO) has been linked to a variety of benefits to both the spacecraft platform and mission design. Critically, for Earth observation (EO) missions a reduction in altitude can enable smaller and less powerful payloads to achieve the same performance as larger instruments or sensors at higher altitude, with significant benefits to the spacecraft design. As a result, renewed interest in the exploitation of these orbits has spurred the development of new technologies that have the potential to enable sustainable operations in this lower altitude range. In this paper, system models are developed for (i) novel materials that improve aerodynamic performance enabling reduced drag or increased lift production and resistance to atomic oxygen erosion and (ii) atmosphere-breathing electric propulsion (ABEP) for sustained drag compensation or mitigation in VLEO. Attitude and orbit control methods that can take advantage of the aerodynamic forces and torques in VLEO are also discussed. These system models are integrated into a framework for concept-level satellite design and this approach is used to explore the system-level trade-offs for future EO spacecraft enabled by these new technologies. A case-study presented for an optical very-high resolution spacecraft demonstrates the significant potential of reducing orbital altitude using these technologies and indicates possible savings of up to 75% in system mass and over 50% in development and manufacturing costs in comparison to current state-of-the-art missions. For a synthetic aperture radar (SAR) satellite, the reduction in mass and cost with altitude were shown to be smaller, though it was noted that currently available cost models do not capture recent commercial advancements in this segment. These results account for the additional propulsive and power requirements needed to sustain operations in VLEO and indicate that future EO missions could benefit significantly by operating in this altitude range. Furthermore, it is shown that only modest advancements in technologies already under development may begin to enable exploitation of this lower altitude range. In addition to the upstream benefits of reduced capital expense and a faster return on investment, lower costs and increased access to high quality observational data may also be passed to the downstream EO industry, with impact across a wide range of commercial, societal, and environmental application areas

    In-orbit aerodynamic coefficient measurements using SOAR (Satellite for Orbital Aerodynamics Research)

    Get PDF
    The Satellite for Orbital Aerodynamics Research (SOAR) is a CubeSat mission, due to be launched in 2021, to investigate the interaction between different materials and the atmospheric flow regime in very low Earth orbits (VLEO). Improving knowledge of the gas–surface interactions at these altitudes and identification of novel materials that can minimise drag or improve aerodynamic control are important for the design of future spacecraft that can operate in lower altitude orbits. Such satellites may be smaller and cheaper to develop or can provide improved Earth observation data or communications link-budgets and latency. In order to achieve these objectives, SOAR features two payloads: (i) a set of steerable fins which provide the ability to expose different materials or surface finishes to the oncoming flow with varying angle of incidence whilst also providing variable geometry to investigate aerostability and aerodynamic control; and (ii) an ion and neutral mass spectrometer with time-of-flight capability which enables accurate measurement of the in-situ flow composition, density, velocity. Using precise orbit and attitude determination information and the measured atmospheric flow characteristics the forces and torques experienced by the satellite in orbit can be studied and estimates of the aerodynamic coefficients calculated. This paper presents the scientific concept and design of the SOAR mission. The methodology for recovery of the aerodynamic coefficients from the measured orbit, attitude, and in-situ atmospheric data using a least-squares orbit determination and free-parameter fitting process is described and the experimental uncertainty of the resolved aerodynamic coefficients is estimated. The presented results indicate that the combination of the satellite design and experimental methodology are capable of clearly illustrating the variation of drag and lift coefficient for differing surface incidence angle. The lowest uncertainties for the drag coefficient measurement are found at approximately 300 km, whilst the measurement of lift coefficient improves for reducing orbital altitude to 200 km

    Intake design for an Atmosphere-Breathing Electric Propulsion System (ABEP)

    Get PDF
    Challenging space missions include those at very low altitudes, where the atmosphere is source of aerodynamic drag on the spacecraft. To extend the lifetime of such missions, an efficient propulsion system is required. One solution is Atmosphere-Breathing Electric Propulsion (ABEP) that collects atmospheric particles to be used as propellant for an electric thruster. The system would minimize the requirement of limited propellant availability and can also be applied to any planetary body with atmosphere, enabling new missions at low altitude ranges for longer times. IRS is developing, within the H2020 DISCOVERER project, an intake and a thruster for an ABEP system. The article describes the design and simulation of the intake, optimized to feed the radio frequency (RF) Helicon-based plasma thruster developed at IRS. The article deals in particular with the design of intakes based on diffuse and specular reflecting materials, which are analysed by the PICLas DSMC-PIC tool. Orbital altitudes and the respective species based on the NRLMSISE-00 model (O, , , He, Ar, H, N) are investigated for several concepts based on fully diffuse and specular scattering, including hybrid designs. The major focus has been on the intake efficiency defined as , with the incoming particle flux, and the one collected by the intake. Finally, two concepts are selected and presented providing the best expected performance for the operation with the selected thruster. The first one is based on fully diffuse accommodation yielding to and the second one based on fully specular accommodation yielding to . Finally, also the influence of misalignment with the flow is analysed, highlighting a strong dependence of in the diffuse-based intake while, for the specular-based intake, this is much lower finally leading to a more resilient design while also relaxing requirements of pointing accuracy for the spacecraft

    Intake Design for an Atmosphere-Breathing Electric Propulsion System (ABEP)

    Get PDF
    Challenging space missions include those at very low altitudes, where the atmosphere is source of aerodynamic drag on the spacecraft. To extend the lifetime of such missions, an efficient propulsion system is required. One solution is Atmosphere-Breathing Electric Propulsion (ABEP) that collects atmospheric particles to be used as propellant for an electric thruster. The system would minimize the requirement of limited propellant availability and can also be applied to any planetary body with atmosphere, enabling new missions at low altitude ranges for longer times. IRS is developing, within the H2020 DISCOVERER project, an intake and a thruster for an ABEP system. The article describes the design and simulation of the intake, optimized to feed the radio frequency (RF) Helicon-based plasma thruster developed at IRS. The article deals in particular with the design of intakes based on diffuse and specular reflecting materials, which are analysed by the PICLas DSMC-PIC tool. Orbital altitudes h=150−250h=150-250 km and the respective species based on the NRLMSISE-00 model (O, N2N_2, O2O_2, He, Ar, H, N) are investigated for several concepts based on fully diffuse and specular scattering, including hybrid designs. The major focus has been on the intake efficiency defined as ηc=N˙out/N˙in\eta_c=\dot{N}_{out}/\dot{N}_{in}, with N˙in\dot{N}_{in} the incoming particle flux, and N˙out\dot{N}_{out} the one collected by the intake. Finally, two concepts are selected and presented providing the best expected performance for the operation with the selected thruster. The first one is based on fully diffuse accommodation yielding to ηc<0.46\eta_c<0.46 and the second one based un fully specular accommodation yielding to ηc<0.94\eta_c<0.94. Finally, also the influence of misalignment with the flow is analysed, highlighting a strong dependence of ηc\eta_c in the diffuse-based intake while, ...Comment: Accepted Versio

    RF Helicon-based Inductive Plasma Thruster (IPT) Design for an Atmosphere-Breathing Electric Propulsion system (ABEP)

    Get PDF
    Challenging space missions include those at very low altitudes, where the atmosphere is source of aerodynamic drag on the spacecraft. To extend such missions lifetime, an efficient propulsion system is required. One solution is Atmosphere-Breathing Electric Propulsion (ABEP). It collects atmospheric particles to be used as propellant for an electric thruster. The system would minimize the requirement of limited propellant availability and can also be applied to any planet with atmosphere, enabling new mission at low altitude ranges for longer times. Challenging is also the presence of reactive chemical species, such as atomic oxygen in Earth orbit. Such species cause erosion of (not only) propulsion system components, i.e. acceleration grids, electrodes, and discharge channels of conventional EP systems. IRS is developing within the DISCOVERER project, an intake and a thruster for an ABEP system. The paper describes the design and implementation of the RF helicon-based inductive plasma thruster (IPT). This paper deals in particular with the design and implementation of a novel antenna called the birdcage antenna, a device well known in magnetic resonance imaging (MRI), and also lately employed for helicon-wave based plasma sources in fusion research. This is aided by the numerical tool XFdtd®. The IPT is based on RF electrodeless operation aided by an externally applied static magnetic field. The IPT is composed by an antenna, a discharge channel, a movable injector, and a solenoid. By changing the operational parameters along with the novel antenna design, the aim is to minimize losses in the RF circuit, and accelerate a quasi-neutral plasma plume. This is also to be aided by the formation of helicon waves within the plasma that are to improve the overall efficiency and achieve higher exhaust velocities. Finally, the designed IPT with a particular focus on the birdcage antenna design procedure is presented
    corecore