45 research outputs found

    Age and Education Effects on a Novel Syntactic Assessment Battery for Elderly Adults

    Get PDF
    The purpose of this study was to delineate the properties of a novel syntactic assessment battery and to present descriptive data on normal elderly individuals. We administered the Syntactic Assessment Battery (hereinafter SAB) using a sentence-picture paradigm to 195 normal elderly adults in three age groups (60–69, 70–79, and 80–90) and five educational levels (No formal education, Elementary School Graduation, Middle School Graduation, High School Graduation, College Graduation and Above). A multiple linear regression model was applied to verify the age and education effects. A summary of results indicated that the SAB effectively detected age and education effects. People generally demonstrated worse performance as they aged but better performance as their educational levels increased. People with high school education and above generally demonstrated stronger performance on the test, although educational effects were not significantly different between elementary and middle school graduation groups. The current novel syntactic assessment battery can serve as a screening measure that sensitively detects age and education effects

    Continuous Nondestructive Monitoring Method Using the Reconstructed Three-Dimensional Conductivity Images via GREIT for Tissue Engineering

    Get PDF
    A continuous Nondestructive monitoring method is required to apply proper feedback controls during tissue regeneration. Conductivity is one of valuable information to assess the physiological function and structural formation of regenerated tissues or cultured cells. However, conductivity imaging methods suffered from inherited ill-posed characteristics in image reconstruction, unknown boundary geometry, uncertainty in electrode position, and systematic artifacts. In order to overcome the limitation of microscopic electrical impedance tomography (micro-EIT), we applied a 3D-specific container with a fixed boundary geometry and electrode configuration to maximize the performance of Graz consensus reconstruction algorithm for EIT (GREIT). The separation of driving and sensing electrodes allows us to simplify the hardware complexity and obtain higher measurement accuracy from a large number of small sensing electrodes. We investigated the applicability of the GREIT to 3D micro-EIT images via numerical simulations and large-scale phantom experiments. We could reconstruct multiple objects regardless of the location. The resolution was 5 mm3 with 30 dB SNR and the position error was less than 2.54 mm. This shows that the new micro-EIT system integrated with GREIT is robust with the intended resolution. With further refinement and scaling down to a microscale container, it may be a continuous nondestructive monitoring tool for tissue engineering applications

    SEALONE (Safety and Efficacy of Coronary Computed Tomography Angiography with Low Dose in Patients Visiting Emergency Room) trial: study protocol for a randomized controlled trial

    Get PDF
    Objective Chest pain is one of the most common complaints in the emergency department (ED). Cardiac computed tomography angiography (CCTA) is a frequently used tool for the early triage of patients with low- to intermediate-risk acute chest pain. We present a study protocol for a multicenter prospective randomized controlled clinical trial testing the hypothesis that a low-dose CCTA protocol using prospective electrocardiogram (ECG)-triggering and limited-scan range can provide sufficient diagnostic safety for early triage of patients with acute chest pain. Methods The trial will include 681 younger adult (aged 20 to 55) patients visiting EDs of three academic hospitals for acute chest pain or equivalent symptoms who require further evaluation to rule out acute coronary syndrome. Participants will be randomly allocated to either low-dose or conventional CCTA protocol at a 2:1 ratio. The low-dose group will undergo CCTA with prospective ECG-triggering and restricted scan range from sub-carina to heart base. The conventional protocol group will undergo CCTA with retrospective ECG-gating covering the entire chest. Patient disposition is determined based on computed tomography findings and clinical progression and all patients are followed for a month. The primary objective is to prove that the chance of experiencing any hard event within 30 days after a negative low-dose CCTA is less than 1%. The secondary objectives are comparisons of the amount of radiation exposure, ED length of stay and overall cost. Results and Conclusion Our low-dose protocol is readily applicable to current multi-detector computed tomography devices. If this study proves its safety and efficacy, dose-reduction without purchasing of expensive newer devices would be possible

    Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis

    Get PDF
    New therapeutic strategies are needed to combat the tuberculosis pandemic and the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) forms of the disease, which remain a serious public health challenge worldwide1, 2. The most urgent clinical need is to discover potent agents capable of reducing the duration of MDR and XDR tuberculosis therapy with a success rate comparable to that of current therapies for drug-susceptible tuberculosis. The last decade has seen the discovery of new agent classes for the management of tuberculosis3, 4, 5, several of which are currently in clinical trials6, 7, 8. However, given the high attrition rate of drug candidates during clinical development and the emergence of drug resistance, the discovery of additional clinical candidates is clearly needed. Here, we report on a promising class of imidazopyridine amide (IPA) compounds that block Mycobacterium tuberculosis growth by targeting the respiratory cytochrome bc1 complex. The optimized IPA compound Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound. In addition, Q203 displays pharmacokinetic and safety profiles compatible with once-daily dosing. Together, our data indicate that Q203 is a promising new clinical candidate for the treatment of tuberculosis

    Cognitive Rehabilitation of Adaptive Behavior in Children with Neurodevelopmental Disorders: A Meta-Analysis

    No full text
    Objectives. Negative behavioral problems often occur following the onset of neurodevelopmental disorders and have an overall impact on the affected children, specifically in terms of their social developmental level. In children, social development behavior has been shown to spontaneously mature over time with the cognitive therapy intervention effects. This study performed a meta-analysis to provide a statistical synopsis of the available evidence of social development behavioral changes following cognitive therapy in children with neurodevelopmental disorders. Methods. Data was collected from two online search engines, including EBSCOhost and PubMed, from January 1, 2006, to August 31, 2016, using the terms “cognition,” “cognitive function,” and “disease including neurodevelopmental disorder with DSM-5.” Two assessors searched the literature using independent inclusion criteria and evaluated the quality of results using the Jadad score. Six articles were chosen using the Comprehensive Meta-Analysis program (version 2.0). Results. Six articles reporting randomized controlled trial studies were included. The effective scores for improving adaptive behavior following cognitive therapy in children with neurodevelopmental disorder were 0.64. The effective score of adaptive behavior was significant in this study (p<0.05). The results showed no significant statistical heterogeneity and publication bias. Conclusions. The findings of the meta-analysis suggest that cognitive interventions are effective at improving adaptive behavior associated with neurodevelopmental disorders

    Tactile Perception for Stroke Induce Changes in Electroencephalography

    No full text
    Objective/Background: Tactile perception is a basic way to obtain and evaluate information about an object. The purpose of this study was to examine the effects of tactile perception on brain activation using two different tactile explorations, passive and active touches, in individuals with chronic hemiparetic stroke. Methods: Twenty patients who were diagnosed with stroke (8 right brain damaged, 12 left brain damaged) participated in this study. The tactile perception was conducted using passive and active explorations in a sitting position. To determine the neurological changes in the brain, this study measured the brain waves of the participants using electroencephalography (EEG). Results: The relative power of the sensory motor rhythm on the right prefrontal lobe and right parietal lobe was significantly greater during the active tactile exploration compared to the relative power during the passive exploration in the left damaged hemisphere. Most of the measured brain areas showed nonsignificantly higher relative power of the sensory motor rhythm during the active tactile exploration, regardless of which hemisphere was damaged. Conclusion: The results of this study provided a neurophysiological evidence on tactile perception in individuals with chronic stroke. Occupational therapists should consider an active tactile exploration as a useful modality on occupational performance in rehabilitation training

    Immortalization of Different Breast Epithelial Cell Types Results in Distinct Mitochondrial Mutagenesis

    No full text
    Different phenotypes of normal cells might influence genetic profiles, epigenetic profiles, and tumorigenicities of their transformed derivatives. In this study, we investigate whether the whole mitochondrial genome of immortalized cells can be attributed to the different phenotypes (stem vs. non-stem) of their normal epithelial cell originators. To accurately determine mutations, we employed Duplex Sequencing, which exhibits the lowest error rates among currently-available DNA sequencing methods. Our results indicate that the vast majority of the observed mutations of the whole mitochondrial DNA occur at low-frequency (rare mutations). The most prevalent rare mutation types are C→T/G→A and A→G/T→C transitions. Frequencies and spectra of homoplasmic point mutations are virtually identical between stem cell-derived immortalized (SV1) cells and non-stem cell-derived immortalized (SV22) cells, verifying that both cell types were derived from the same woman. However, frequencies of rare point mutations are significantly lower in SV1 cells (5.79 × 10−5) than in SV22 cells (1.16 × 10−4). The significantly lower frequencies of rare mutations are aligned with a finding of longer average distances to adjacent mutations in SV1 cells than in SV22 cells. Additionally, the predicted pathogenicity for rare mutations in the mitochondrial tRNA genes tends to be lower (by 2.5-fold) in SV1 cells than in SV22 cells. While four known/confirmed pathogenic mt-tRNA mutations (m.5650 G&gt;A, m.5521 G&gt;A, m.5690 A&gt;G, m.1630 A&gt;G) were identified in SV22 cells, no such mutations were observed in SV1 cells. Our findings suggest that the immortalization of normal cells with stem cell features leads to decreased mitochondrial mutagenesis, particularly in RNA gene regions. The mutation spectra and mutations specific to stem cell-derived immortalized cells (vs. non-stem cell derived) have implications in characterizing the heterogeneity of tumors and understanding the role of mitochondrial mutations in the immortalization and transformation of human cells
    corecore