61 research outputs found

    Triple-C: resource-usage prediction for semi-automatic parallelization of groups of dynamic image-processing tasks

    Get PDF
    With the emergence of dynamic video processing, such as in image analysis, runtime estimation of resource usage would be highly attractive for automatic parallelization and QoS control with shared resources. A possible solution is to characterize the application execution using model descriptions of the resource usage. In this paper, we introduce Triple-C, a prediction model for computation, cache-memory and communication-bandwidth usage with scenario-based Markov chains. As a typical application, we explore a medical imaging function to enhance objects of interest in X-ray angiography sequences. Experimental results show that our method can be successfully applied to describe the resource usage for dynamic image-processing tasks, even if the flow graph dynamically switches between groups of tasks. An average prediction accuracy of 97% is reached with sporadic excursions of the prediction error up to 20-30%. As a case study, we exploit the prediction results for semi-automatic parallelization. Results show that with Triple-C prediction, dynamic processing tasks can be executed in real-time with a constant low latency

    Evolution of progenitor stars of Type Ibc supernovae and long gamma-ray bursts

    Full text link
    We discuss how rotation and binary interactions may be related to the diversity of type Ibc supernovae and long gamma-ray bursts. After presenting recent evolutionary models of massive single and binary stars including rotation, the Tayler-Spruit dynamo and binary interactions, we argue that the nature of SNe Ibc progenitors from binary systems may not significantly differ from that of single star progenitors in terms of rotation, and that most long GRB progenitors may be produced via the quasi-chemically homogeneous evolution at sub-solar metallicity. We also briefly discuss the possible role of magnetic fields generated in the convective core of a massive star for the transport of angular momentum, which is potentially important for future stellar evolution models of supernova and GRB progenitors.Comment: 6 pages, 4 figures, to appear in IAU Symp. 250, Massive Stars as Cosmic Engines, Kauai (HI), 12/2007, ed. F. Bresolin, P. Crowther, & J. Pul

    Probing the internal rotation of pre-white dwarf stars with asteroseismology: the case of PG 122+200

    Get PDF
    We put asteroseismological constraints on the internal rotation profile of the GW Vir (PG1159-type) star PG 0122+200. To this end we employ a state-of-the-art asteroseismological model for this star and we assess the expected frequency splittings induced by rotation adopting a forward approach in which we compare the theoretical frequency separations with the observed ones assuming different types of plausible internal rotation profiles. We also employ two asteroseismological inversion methods for the inversion of the rotation profile of PG 0122+200. We find evidence for differential rotation in this star. We demonstrate that the frequency splittings of the rotational multiplets exhibited by PG 0122+200 are compatible with a rotation profile in which the central regions are spinning about 2.4 times faster than the stellar surface.Comment: 8 pages, 6 figures, 2 tables. To be published in MNRA

    Decentralized subcontractor scheduling with divisible jobs

    Get PDF
    Subcontracting allows manufacturer agents to reduce completion times of their jobs and thus obtain savings. This paper addresses the coordination of decentralized scheduling systems with a single subcontractor and several agents having divisible jobs. Assuming complete information, we design parametric pricing schemes that strongly coordinate this decentralized system, i.e., the agents’ choices of subcontracting intervals always result in efficient schedules. The subcontractor’s revenue under the pricing schemes depends on a single parameter which can be chosen to make the revenue as close to the total savings as required. Also, we give a lower bound on the subcontractor’s revenue for any coordinating pricing scheme. Allowing private information about processing times, we prove that the pivotal mechanism is coordinating, i.e., agents are better off by reporting their true processing times, and by participating in the subcontracting. We show that the subcontractor’s maximum revenue with any coordinating mechanism under private information equals the lower bound of that with coordinating pricing schemes under complete information. Finally, we address the asymmetric case where agents obtain savings at different rates per unit reduction in completion times. We show that coordinating pricing schemes do not always exist in this case

    Rotating massive main-sequence stars:I. Grids of evolutionary models and isochrones⋆

    Get PDF
    We present a dense grid of evolutionary tracks and isochrones of rotating massive main-sequence stars. We provide three grids with different initial compositions tailored to compare with early OB stars in the Small and Large Magellanic Clouds and in the Galaxy. Each grid covers masses ranging from 5 to 60 M and initial rotation rates between 0 and about 600 km s−1. To calibrate our models we used the results of the VLT-FLAMES Survey of Massive Stars. We determine the amount of convective overshooting by using the observed drop in rotation rates for stars with surface gravities logg <3.2 to determine the width of the main sequence. We calibrate the efficiency of rotationally induced mixing using the nitrogen abundance determinations for B stars in the Large Magellanic cloud. We describe and provide evolutionary tracks and the evolution of the central and surface abundances. In particular, we discuss the occurrence of quasi-chemically homogeneous evolution, i.e. the severe effects of efficient mixing of the stellar interior found for the most massive fast rotators. We provide a detailed set of isochrones for rotating stars. Rotation as an initial parameter leads to a degeneracy between the age and the mass of massive main sequence stars if determined from its observed location in the Hertzsprung-Russell diagram. We show that the consideration of surface abundances can resolve this degeneracy

    Rotational mixing in massive binaries: detached short-period systems

    Full text link
    Models of rotating single stars can successfully account for a wide variety of observed stellar phenomena, such as the surface enhancements of N and He. However, recent observations have questioned the idea that rotational mixing is the main process responsible for the surface enhancements, emphasizing the need for a strong and conclusive test. We investigate the consequences of rotational mixing for massive main-sequence stars in short-period binaries. In these systems the tides spin up the stars to rapid rotation. We use a state-of-the-art stellar evolution code including the effect of rotational mixing, tides, and magnetic fields. We discuss the surface abundances expected in massive close binaries (M1~20 solar masses) and we propose using such systems to test the concept of rotational mixing. As these short-period binaries often show eclipses, their parameters can be determined with high accuracy, allowing for a direct comparison with binary evolution models. In more massive close systems (M1~50 solar masses, Porb<~2 days) we find that helium is efficiently mixed throughout the envelope. The star remains blue and compact during the main-sequence phase. It stays within its Roche lobe while it gradually becomes a helium star. It is the less massive star, in which the effects of rotational mixing are less pronounced, which fills its Roche lobe first. We propose that this evolution path provides an alternative channel for the formation of tight Wolf-Rayet binaries with a main-sequence companion and might explain massive black hole binaries such as the intriguing system M33 X-7.Comment: Accepted for publication in A&A, in pres

    Resource prediction and quality control for parallel execution of heterogeneous medical imaging tasks

    Get PDF
    We have established a novel control system for combining the parallel execution of deterministic and non-deterministic medical imaging applications on a single platform, sharing the same constrained resources. The control system aims at avoiding resource overload and ensuring throughput and latency of critical applications, by means of accurate resource-usage prediction. Our approach is based on modeling the required computation tasks, by employing a combination of weighted moving-average filtering and scenario-based Markov chains to predict the execution. Experimental validation on medical image processing shows an accuracy of 97%. As a result, the latency variation within non-deterministic analysis applications is reduced by 70% by adaptively splitting/merging of tasks. Furthermore, the parallel execution of a deterministic live-viewing application features constant throughput and latency by dynamically switching between quality modes. Interestingly, our solution can successfully be reused for alternative applications with several parallel streams, like in surveillance
    corecore