8 research outputs found

    Vesicles Shed by Pathological Murine Adipocytes Spread Pathology: Characterization and Functional Role of Insulin Resistant/Hypertrophied Adiposomes

    Get PDF
    Extracellular vesicles (EVs) have recently emerged as a relevant way of cell to cell communication, and its analysis has become an indirect approach to assess the cell/tissue of origin status. However, the knowledge about their nature and role on metabolic diseases is still very scarce. We have established an insulin resistant (IR) and two lipid (palmitic/oleic) hypertrophied adipocyte cell models to isolate EVs to perform a protein cargo qualitative and quantitative Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH) analysis by mass spectrometry. Our results show a high proportion of obesity and IR-related proteins in pathological EVs; thus, we propose a panel of potential obese adipose tissue EV-biomarkers. Among those, lipid hypertrophied vesicles are characterized by ceruloplasmin, mimecan, and perilipin 1 adipokines, and those from the IR by the striking presence of the adiposity and IR related transforming growth factor-beta-induced protein ig-h3 (TFGBI). Interestingly, functional assays show that IR and hypertrophied adipocytes induce differentiation/hypertrophy and IR in healthy adipocytes through secreted EVs. Finally, we demonstrate that lipid atrophied adipocytes shed EVs promote macrophage inflammation by stimulating IL-6 and TNFα expression. Thus, we conclude that pathological adipocytes release vesicles containing representative protein cargo of the cell of origin that are able to induce metabolic alterations on healthy cells probably exacerbating the disease once establishedThis research was funded by Instituto de Salud Carlos III-FEDER, grant number PI16/01212S

    Naturally presented HLA class I–restricted epitopes from the neurotrophic factor S100-β are targets of the autoimmune response in type 1 diabetes

    Get PDF
    Type 1 diabetes (T1D) results from the destruction of pancreatic β-cells by the immune system, and CD8+ T lymphocytes are critical actors in this autoimmune response. Pancreatic islets are surrounded by a mesh of nervous cells, the peri-insular Schwann cells, which are also targeted by autoreactive T lymphocytes and express specific antigens, such as the neurotrophic factor S100-β. Previous work has shown increased proliferative responses to whole S100-β in both human T1D patients and the nonobese diabetic (NOD) mouse model. We describe for the first time naturally processed and presented epitopes (NPPEs) presented by class I human leukocyte antigen–A*02:01 (A2.1) molecules derived from S100-β. These NPPEs triggered IFN-γ responses more frequently in both newly diagnosed and long-term T1D patients compared with healthy donors. Furthermore, the same NPPEs are recognized during the autoimmune response leading to diabetes in A2.1-transgenic NOD mice as early as 4 wk of age. Interestingly, when these NPPEs are used to prevent diabetes in this animal model, an acceleration of the disease is observed together with an exacerbation in insulitis and an increase in S100-β–specific cytotoxicity in vaccinated animals. Whether these can be used in diabetes prevention needs to be carefully evaluated in animal models before use in future clinical assays.—Calviño-Sampedro, C., Gomez-Tourino, I., Cordero, O. J., Reche, P. A., Gómez-Perosanz, M., Sánchez-Trincado, J. L., Rodríguez, M. Á., Sueiro, A. M., Viñuela, J. E., Calviño, R. V. Naturally presented HLA class I–restricted epitopes from the neurotrophic factor S100-β are targets of the autoimmune response in type 1 diabetesThe authors thank Dr. Sefina Arif (King’s College London, London, United Kingdom) for critically reviewing the manuscript. This work was funded by the Ministerio de Economía y Competitividad (Grant BIO2014-53091-C3-3-R to R.V.C.). During this work, I.G.-T. was supported by a Maria Barbeito predoctoral fellowship (Xunta de Galicia, La Coruña, Spain). During this work, C.C.-S. was supported by a Deputación da Coruña grant (2012–2013 and 2016–2017)S

    Phosphoproteomic Analysis of Platelets in Severe Obesity Uncovers Platelet Reactivity and Signaling Pathways Alterations

    Get PDF
    OBJECTIVE: Obesity is associated with a proinflammatory and prothrombotic state that supports atherosclerosis progression. The goal of this study was to gain insights into the phosphorylation events related to platelet reactivity in obesity and identify platelet biomarkers and altered activation pathways in this clinical condition. APPROACH AND RESULTS: We performed a comparative phosphoproteomic analysis of resting platelets from obese patients and their age- A nd gender-matched lean controls. The phosphoproteomic data were validated by mechanistic, functional, and biochemical assays. We identified 220 differentially regulated phosphopeptides, from at least 175 proteins; interestingly, all were up-regulated in obesity. Most of the altered phosphoproteins are involved in SFKs (Src-family kinases)-related signaling pathways, cytoskeleton reorganization, and vesicle transport, some of them validated by targeted mass spectrometry. To confirm platelet dysfunction, flow cytometry assays were performed in whole blood indicating higher surface levels of GP (glycoprotein) VI and CLEC (C-type lectin-like receptor) 2 in platelets from obese patients correlating positively with body mass index. Receiver operator characteristics curves analysis suggested a much higher sensitivity for GPVI to discriminate between obese and lean individuals. Indeed, we also found that obese platelets displayed more adhesion to collagen-coated plates. In line with the above data, soluble GPVI levels-indicative of higher GPVI signaling activation-were almost double in plasma from obese patients. CONCLUSIONS: Our results provide novel information on platelet phosphorylation changes related to obesity, revealing the impact of this chronic pathology on platelet reactivity and pointing towards the main signaling pathways dysregulatedThis work was supported by the Spanish Ministry of Science and Innovation (grants No. SAF2016-79662-R, and PID2019-108727RB-I00), co-funded by the European Regional Development Fund (ERDF). Financial support from the Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia (Centro Singular de investigación de Galicia accreditation 2019–2022, ED431G 2019/02; predoctoral grant 2018 Call) and the ERDF is also gratefully acknowledged. E.E. Gardiner and R.K. Andrews are supported by the National Health and Medical Research Council of Australia. The Proteomics Laboratory CSIC/UAB (Centro Superior de Investigaciones Científicas/Universidad Autónoma de Barcelona) is a member of Proteored, PRB3-ISCIII (Instituto de Salud Carlos III), and is supported by Grant PT17/0019/0008, funded by ISCIII and ERDF. L.A. Morán is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 766118. S.P. Watson is supported by a BHF (British Heart Foundation) Chair (CH03/003)

    Naturally presented HLA class I-restricted epitopes from the neurotrophic factor S100-? are targets of the autoimmune response in type 1 diabetes

    Get PDF
    Type 1 diabetes (T1D) results from the destruction of pancreatic beta-cells by the immune system, and CD8(+) T lymphocytes are critical actors in this autoimmune response. Pancreatic islets are surrounded by a mesh of nervous cells, the peri-insular Schwann cells, which are also targeted by autoreactive T lymphocytes and express specific antigens, such as the neurotrophic factor S100-beta. Previous work has shown increased proliferative responses to whole S100-beta in both human T1D patients and the nonobese diabetic (NOD) mouse model. We describe for the first time naturally processed and presented epitopes (NPPEs) presented by class I human leukocyte antigen-A*02:01 (A2.1) molecules derived from S100-beta. These NPPEs triggered IFN-gamma responses more frequently in both newly diagnosed and long-term T1D patients compared with healthy donors. Furthermore, the same NPPEs are recognized during the autoimmune response leading to diabetes in A2.1-transgenic NOD mice as early as 4 wk of age. Interestingly, when these NPPEs are used to prevent diabetes in this animal model, an acceleration of the disease is observed together with an exacerbation in insulitis and an increase in S100-beta-specific cytotoxicity in vaccinated animals. Whether these can be used in diabetes prevention needs to be carefully evaluated in animal models before use in future clinical assays.-Calvino-Sampedro, C., Gomez-Tourino, I., Cordero, O. J., Reche, P. A., Gomez-Perosanz, M., Sanchez-Trincado, J. L., Rodriguez, M. A., Sueiro, A. M., Vinuela, J. E., Calvino, R. V. Naturally presented HLA class I-restricted epitopes from the neurotrophic factor S100-beta are targets of the autoimmune response in type 1 diabetes

    Platelet Lipidome Fingerprint: New Assistance to Characterize Platelet Dysfunction in Obesity

    No full text
    Obesity is associated with a pro-inflammatory and pro-thrombotic state that supports atherosclerosis progression and platelet hyper-reactivity. During the last decade, the platelet lipidome has been considered a treasure trove, as it is a source of biomarkers for preventing and treating different pathologies. The goal of the present study was to determine the lipid profile of platelets from non-diabetic, severely obese patients compared with their age- and sex-matched lean controls. Lipids from washed platelets were isolated and major phospholipids, sphingolipids and neutral lipids were analyzed either by gas chromatography or by liquid chromatography coupled to mass spectrometry. Despite a significant increase in obese patient’s plasma triglycerides, there were no significant differences in the levels of triglycerides in platelets among the two groups. In contrast, total platelet cholesterol was significantly decreased in the obese group. The profiling of phospholipids showed that phosphatidylcholine and phosphatidylethanolamine contents were significantly reduced in platelets from obese patients. On the other hand, no significant differences were found in the sphingomyelin and ceramide levels, although there was also a tendency for reduced levels in the obese group. The outline of the glycerophospholipid and sphingolipid molecular species (fatty-acyl profiles) was similar in the two groups. In summary, these lipidomics data indicate that platelets from obese patients have a unique lipid fingerprint that may guide further studies and provide mechanistic-driven perspectives related to the hyperactivate state of platelets in obesity

    GPVI surface expression and signalling pathway activation are increased in platelets from obese patients: Elucidating potential anti-atherothrombotic targets in obesity.

    Get PDF
    BACKGROUND AND AIMS: Platelets play a fundamental role in the increased atherothrombotic risk related to central obesity since they show hyperactivation and lower sensitivity to antiplatelet therapy in obese patients. The main goal of this study was to identify platelet biomarkers related to the risk of atherothrombosis in obese patients, confirm platelet activation levels in these patients, and identify altered activation pathways. METHODS: Platelets were obtained from cohorts of obese patients and age- and sex-matched lean controls. Biochemical and proteome analyses were done by two-dimensional differential in-gel electrophoresis (2D-DIGE), mass spectrometry, and immunoblotting. Functional and mechanistic studies were conducted with aggregation assays and flow cytometry. RESULTS: We confirmed an up-regulation of αIIb and fibrinogen isoforms in platelets from obese patients. A complementary platelet aggregation approach showed platelets from obese patients are hyper-reactive in response to collagen and collagen-related peptide (CRP), revealing the collagen receptor Glycoprotein VI (GPVI) signalling as one of the altered pathways. We also found the active form of Src (pTyr418) is up-regulated in platelets from obese individuals, which links proteomics to aggregation data. Moreover, we showed that CRP-activated platelets present higher levels of tyrosine phosphorylated PLCγ2 in obese patients, confirming alterations in GPVI signalling. In line with the above, flow cytometry studies show higher surface expression levels of total GPVI and GPVI-dimer in obese platelets, both correlating with BMI. CONCLUSIONS: Our results suggest a higher activation state of SFKs-mediated signalling pathways in platelets from obese patients, with a primary involvement of GPVI signalling.In addition to the British Heart Foundation, the following are the sources of funding: Spanish Ministry of Economy and Competitiveness (MINECO) [grant No. SAF2016-79662-R], co-funded by the European Regional Development Fund (ERDF). Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia (Centro Singular de investigación de Galicia accreditation 2016-2019, ED431G/05) Regional Development Fund (ERDF

    A Combination of Proteomic Approaches Identifies A Panel of Circulating Extracellular Vesicle Proteins Related to the Risk of Suffering Cardiovascular Disease in Obese Patients

    No full text
    Plasma-derived extracellular vesicles (EVs) have been extensively described as putative biomarkers in different diseases. Interestingly, increased levels of EVs subpopulations are well known to associate with obesity. The goal of this study is to identify EVs-derived biomarkers in plasma from obese patients in order to predict the development of pathological events associated with obesity. Samples are obtained from 22 obese patients and their lean-matched controls are divided into two cohorts: one for a 2D fluorescence difference gel electrophoresis (2D-DIGE)-based study, and the other one for a label free LC–MS/MS-based approach. EVs are isolated following a serial ultracentrifugation protocol. Twenty-two and 23 differentially regulated features are detected from 2D-DIGE and label free LC–MS/MS, respectively; most of them involve in the coagulation and complement cascades. Remarkably, there is an upregulation of complement C4, complement C3, and fibrinogen in obese patients following both approaches, the latter two also validated by 2D-western-blotting in an independent cohort. These results correlate with a proinflammatory and prothrombotic state of those individuals. On the other hand, a downregulation of adiponectin leading to an increased risk of suffering cardiovascular diseases has been shown. The results suggest the relevance of plasma-derived-EVs proteins as a source of potential biomarkers for the development of atherothrombotic events in obesity.This work was supported by the Spanish Ministry of Economy and Competitiveness; grant No. SAF2016-79662-R), co-funded by the European Regional Development Fund. Financial support from the Conseller ́ıa de Cultura, Educaci ́on e Ordenaci ́on Universitaria, Xunta de Galicia (Centro Singular de investigaci ́on de Galicia accreditation 2016–2019,ED431G/05), and the European Regional Development Fund is also grate-fully acknowledged. The Proteomics Laboratory CSIC/UAB is a member ofProteored, PRB2-ISCIII and is supported by Grant PT13/0001, of the PEI+D+i 2013–2016, funded by ISCIII and FEDER

    Data on hyper-activation of GPVI signalling in obese patients: Towards the identification of novel antiplatelet targets in obesity.

    Get PDF
    This data article is associated with the manuscript "GPVI surface expression and signalling pathway activation are increased in platelets from obese patients: elucidating potential anti-atherothrombotic targets in obesity" [1]. The study refers to a combination of different approaches in order to identify platelet-derived biomarkers in obesity. A total of 34 obese patients and their lean-matched controls were included in the study. We carried out a proteomic and functional (aggregation assays) analysis to find alterations in platelet-derived signalling pathways. After that, biochemical and mechanistic (flow cytometry assays) approaches were done in order to confirm a hyperactivation of the GPVI-related signalling pathway.Spanish Ministry of Economy and Competitiveness (MINECO) [grant No. SAF2016-79662-R] European Regional Development Fund (ERDF). Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia (Centro Singular de investigación de Galicia accreditation 2016-2019, ED431G/05) European Regional Development Fund (ERDF) British Heart Foundation, grants SP/13/7/30575, PG/18/36/338, and RG/15/4/31268
    corecore