16 research outputs found

    The ecology of palm genomes: repeat-associated genome size expansion is constrained by aridity

    Get PDF
    Genome size varies 2400-fold across plants, influencing their evolution through changes in cell size and cell division rates which impact plants' environmental stress tolerance. Repetitive element expansion explains much genome size diversity, and the processes structuring repeat "communities" are analogous to those structuring ecological communities. However, which environmental stressors influence repeat community dynamics has not yet been examined from an ecological perspective. We measured genome size and leveraged climatic data for 91% of genera within the ecologically diverse palm family (Arecaceae). We then generated genomic repeat profiles for 141 palm species, and analysed repeats using phylogenetically informed linear models to explore relationships between repeat dynamics and environmental factors. We show that palm genome size and repeat "community" composition are best explained by aridity. Specifically, Ty3-gypsy and TIR elements were more abundant in palm species from wetter environments, which generally had larger genomes, suggesting amplification. By contrast, Ty1-copia and LINE elements were more abundant in drier environments. Our results suggest that water stress inhibits repeat expansion through selection on upper genome size limits. However, elements that may associate with stress-response genes (e.g. Ty1-copia) have amplified in arid-adapted palm species. Overall, we provide novel evidence of climate influencing the assembly of repeat "communities".JP was supported by a Ramón y Cajal Fellowship (RYC-2017-2274) funded by MCIN/AEI/10.13039/501100011033 and by ‘ESF Investing in your future’. SB was funded by a Garfield Weston Foundation postdoctoral fellowship. PN and JM were supported by the ELIXIR CZ Research Infrastructure Project (Czech Ministry of Education, Youth and Sports; grant no. LM2018131).IntroductionMaterials and Methods Plant material collection and genome size measurement Phylogenetic, environmental and genomic data collection Modelling relationships between genome size and environmental variables DNA repeat profiling Assessing repeat dynamics in palm genomesResults Palm genome size variation Aridity preferences of palm species help explain genome size variation Ecological metrics of palm repeat ‘communities’ vary with genome size Repeat abundances correlate with genome size Aridity preferences of palm species explain abundances of certain repeat lineagesDiscussion Palm genome size variation Aridity thresholds best explain palm genome size diversity The ‘community ecology’ of repeats correlates with genome size Repeat dynamics may be modulated by aridityConclusionsAcknowledgementsAuthor contributionsPeer reviewe

    Pharmacogenetic & Pharmacokinetic Biomarker for Efavirenz Based ARV and Rifampicin Based Anti-TB Drug Induced Liver Injury in TB-HIV Infected Patients

    Get PDF
    BACKGROUND: Implication of pharmacogenetic variations and efavirenz pharmacokinetics in concomitant efavirenz based antiviral therapy and anti-tubercular drug induced liver injury (DILI) has not been yet studied. We performed a prospective case-control association study to identify the incidence, pharmacogenetic, pharmacokinetic and biochemical predictors for anti-tubercular and antiretroviral drugs induced liver injury (DILI) in HIV and tuberculosis (TB) co-infected patients. METHODS AND FINDINGS: Newly diagnosed treatment naïve TB-HIV co-infected patients (n = 353) were enrolled to receive efavirenz based ART and rifampicin based anti-TB therapy, and assessed clinically and biochemically for DILI up to 56 weeks. Quantification of plasma efavirenz and 8-hydroxyefaviernz levels and genotyping for NAT2, CYP2B6, CYP3A5, ABCB1, UGT2B7 and SLCO1B1 genes were done. The incidence of DILI and identification of predictors was evaluated using survival analysis and the Cox Proportional Hazards Model. The incidence of DILI was 30.0%, or 14.5 per 1000 person-week, and that of severe was 18.4%, or 7.49 per 1000 person-week. A statistically significant association of DILI with being of the female sex (p = 0.001), higher plasma efavirenz level (p = 0.009), efavirenz/8-hydroxyefavirenz ratio (p = 0.036), baseline AST (p = 0.022), ALT (p = 0.014), lower hemoglobin (p = 0.008), and serum albumin (p = 0.007), NAT2 slow-acetylator genotype (p = 0.039) and ABCB1 3435TT genotype (p = 0.001). CONCLUSION: We report high incidence of anti-tubercular and antiretroviral DILI in Ethiopian patients. Between patient variability in systemic efavirenz exposure and pharmacogenetic variations in NAT2, CYP2B6 and ABCB1 genes determines susceptibility to DILI in TB-HIV co-infected patients. Close monitoring of plasma efavirenz level and liver enzymes during early therapy and/or genotyping practice in HIV clinics is recommended for early identification of patients at risk of DILI

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    The Physics of the B Factories

    Get PDF

    Expression and localization of C-type natriuretic peptide in human vascular smooth muscle cells

    No full text
    Objectives: C-type natriuretic peptide (CNP) released by vascular endothelium relaxes smooth muscle and is important in the maintenance of vascular tone. Since it is not known whether other human vascular cell types produce CNP, we investigated its expression in human vascular smooth muscle. Methods: CNP expression was examined by RT-PCR in vascular smooth muscle cells (SMC) cultured from human saphenous vein (SV), internal mammary artery (IMA) and radial artery (RA), and CNP protein was probed using immunostaining, in tissue sections and in SMCs cultured from these vessels, respectively. Results: PCR for CNP produced a 334 by product in all SMC cultures, as expressed in endothelial cells, although the band intensity was markedly less in SMCs. Myocardium from CNP-knockout mouse did not express CNP, while there was expression in wild-type mouse. CNP protein was detected by immunostaining in 100% of SMC cultures. By immunostaining of tissue sections, CNP was detected throughout the medial layer, but not adventitia, of all vessel types. Conclusions: Expression of CNP at gene and protein level by human vascular SMCs suggests that CNP may have the capacity to regulate vascular tone independently of the endothelium. (c) 2006 Published by Elsevier Inc
    corecore