11 research outputs found
Analyzing historical diagnosis code data from NIH N3C and RECOVER Programs using deep learning to determine risk factors for Long Covid
Post-acute sequelae of SARS-CoV-2 infection (PASC) or Long COVID is an
emerging medical condition that has been observed in several patients with a
positive diagnosis for COVID-19. Historical Electronic Health Records (EHR)
like diagnosis codes, lab results and clinical notes have been analyzed using
deep learning and have been used to predict future clinical events. In this
paper, we propose an interpretable deep learning approach to analyze historical
diagnosis code data from the National COVID Cohort Collective (N3C) to find the
risk factors contributing to developing Long COVID. Using our deep learning
approach, we are able to predict if a patient is suffering from Long COVID from
a temporally ordered list of diagnosis codes up to 45 days post the first COVID
positive test or diagnosis for each patient, with an accuracy of 70.48\%. We
are then able to examine the trained model using Gradient-weighted Class
Activation Mapping (GradCAM) to give each input diagnoses a score. The highest
scored diagnosis were deemed to be the most important for making the correct
prediction for a patient. We also propose a way to summarize these top
diagnoses for each patient in our cohort and look at their temporal trends to
determine which codes contribute towards a positive Long COVID diagnosis
Risk factors associated with post-acute sequelae of SARS-CoV-2: an N3C and NIH RECOVER study
Background More than one-third of individuals experience post-acute sequelae of SARS-CoV-2 infection (PASC, which includes long-COVID). The objective is to identify risk factors associated with PASC/long-COVID diagnosis. Methods This was a retrospective case–control study including 31 health systems in the United States from the National COVID Cohort Collaborative (N3C). 8,325 individuals with PASC (defined by the presence of the International Classification of Diseases, version 10 code U09.9 or a long-COVID clinic visit) matched to 41,625 controls within the same health system and COVID index date within ± 45 days of the corresponding case's earliest COVID index date. Measurements of risk factors included demographics, comorbidities, treatment and acute characteristics related to COVID-19. Multivariable logistic regression, random forest, and XGBoost were used to determine the associations between risk factors and PASC. Results Among 8,325 individuals with PASC, the majority were > 50 years of age (56.6%), female (62.8%), and non-Hispanic White (68.6%). In logistic regression, middle-age categories (40 to 69 years; OR ranging from 2.32 to 2.58), female sex (OR 1.4, 95% CI 1.33–1.48), hospitalization associated with COVID-19 (OR 3.8, 95% CI 3.05–4.73), long (8–30 days, OR 1.69, 95% CI 1.31–2.17) or extended hospital stay (30 + days, OR 3.38, 95% CI 2.45–4.67), receipt of mechanical ventilation (OR 1.44, 95% CI 1.18–1.74), and several comorbidities including depression (OR 1.50, 95% CI 1.40–1.60), chronic lung disease (OR 1.63, 95% CI 1.53–1.74), and obesity (OR 1.23, 95% CI 1.16–1.3) were associated with increased likelihood of PASC diagnosis or care at a long-COVID clinic. Characteristics associated with a lower likelihood of PASC diagnosis or care at a long-COVID clinic included younger age (18 to 29 years), male sex, non-Hispanic Black race, and comorbidities such as substance abuse, cardiomyopathy, psychosis, and dementia. More doctors per capita in the county of residence was associated with an increased likelihood of PASC diagnosis or care at a long-COVID clinic. Our findings were consistent in sensitivity analyses using a variety of analytic techniques and approaches to select controls. Conclusions This national study identified important risk factors for PASC diagnosis such as middle age, severe COVID-19 disease, and specific comorbidities. Further clinical and epidemiological research is needed to better understand underlying mechanisms and the potential role of vaccines and therapeutics in altering PASC course. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-023-16916-w
Risk of post-acute sequelae of SARS-CoV-2 infection associated with pre-coronavirus disease obstructive sleep apnea diagnoses: an electronic health record-based analysis from the RECOVER initiative
Obstructive sleep apnea (OSA) has been associated with more severe acute coronavirus disease-2019 (COVID-19) outcomes. We assessed OSA as a potential risk factor for Post-Acute Sequelae of SARS-CoV-2 (PASC).We assessed the impact of preexisting OSA on the risk for probable PASC in adults and children using electronic health record data from multiple research networks. Three research networks within the REsearching COVID to Enhance Recovery initiative (PCORnet Adult, PCORnet Pediatric, and the National COVID Cohort Collaborative [N3C]) employed a harmonized analytic approach to examine the risk of probable PASC in COVID-19-positive patients with and without a diagnosis of OSA prior to pandemic onset. Unadjusted odds ratios (ORs) were calculated as well as ORs adjusted for age group, sex, race/ethnicity, hospitalization status, obesity, and preexisting comorbidities.Across networks, the unadjusted OR for probable PASC associated with a preexisting OSA diagnosis in adults and children ranged from 1.41 to 3.93. Adjusted analyses found an attenuated association that remained significant among adults only. Multiple sensitivity analyses with expanded inclusion criteria and covariates yielded results consistent with the primary analysis.Adults with preexisting OSA were found to have significantly elevated odds of probable PASC. This finding was consistent across data sources, approaches for identifying COVID-19-positive patients, and definitions of PASC. Patients with OSA may be at elevated risk for PASC after SARS-CoV-2 infection and should be monitored for post-acute sequelae
Recommended from our members
Universal representation learning for multivariate time series using the instance-level and cluster-level supervised contrastive learning
The multivariate time series classification (MTSC) task aims to predict a class label for a given time series. Recently, modern deep learning-based approaches have achieved promising performance over traditional methods for MTSC tasks. The success of these approaches relies on access to the massive amount of labeled data (i.e., annotating or assigning tags to each sample that shows its corresponding category). However, obtaining a massive amount of labeled data is usually very time-consuming and expensive in many real-world applications such as medicine, because it requires domain experts’ knowledge to annotate data. Insufficient labeled data prevents these models from learning discriminative features, resulting in poor margins that reduce generalization performance. To address this challenge, we propose a novel approach: supervised contrastive learning for time series classification (SupCon-TSC). This approach improves the classification performance by learning the discriminative low-dimensional representations of multivariate time series, and its end-to-end structure allows for interpretable outcomes. It is based on supervised contrastive (SupCon) loss to learn the inherent structure of multivariate time series. First, two separate augmentation families, including strong and weak augmentation methods, are utilized to generate augmented data for the source and target networks, respectively. Second, we propose the instance-level, and cluster-level SupCon learning approaches to capture contextual information to learn the discriminative and universal representation for multivariate time series datasets. In the instance-level SupCon learning approach, for each given anchor instance that comes from the source network, the low-variance output encodings from the target network are sampled as positive and negative instances based on their labels. However, the cluster-level approach is performed between each instance and cluster centers among batches, as opposed to the instance-level approach. The cluster-level SupCon loss attempts to maximize the similarities between each instance and cluster centers among batches. We tested this novel approach on two small cardiopulmonary exercise testing (CPET) datasets and the real-world UEA Multivariate time series archive. The results of the SupCon-TSC model on CPET datasets indicate its capability to learn more discriminative features than existing approaches in situations where the size of the dataset is small. Moreover, the results on the UEA archive show that training a classifier on top of the universal representation features learned by our proposed method outperforms the state-of-the-art approaches
Risk factors associated with post-acute sequelae of SARS-CoV-2: an N3C and NIH RECOVER study
Abstract Background More than one-third of individuals experience post-acute sequelae of SARS-CoV-2 infection (PASC, which includes long-COVID). The objective is to identify risk factors associated with PASC/long-COVID diagnosis. Methods This was a retrospective case–control study including 31 health systems in the United States from the National COVID Cohort Collaborative (N3C). 8,325 individuals with PASC (defined by the presence of the International Classification of Diseases, version 10 code U09.9 or a long-COVID clinic visit) matched to 41,625 controls within the same health system and COVID index date within ± 45 days of the corresponding case's earliest COVID index date. Measurements of risk factors included demographics, comorbidities, treatment and acute characteristics related to COVID-19. Multivariable logistic regression, random forest, and XGBoost were used to determine the associations between risk factors and PASC. Results Among 8,325 individuals with PASC, the majority were > 50 years of age (56.6%), female (62.8%), and non-Hispanic White (68.6%). In logistic regression, middle-age categories (40 to 69 years; OR ranging from 2.32 to 2.58), female sex (OR 1.4, 95% CI 1.33–1.48), hospitalization associated with COVID-19 (OR 3.8, 95% CI 3.05–4.73), long (8–30 days, OR 1.69, 95% CI 1.31–2.17) or extended hospital stay (30 + days, OR 3.38, 95% CI 2.45–4.67), receipt of mechanical ventilation (OR 1.44, 95% CI 1.18–1.74), and several comorbidities including depression (OR 1.50, 95% CI 1.40–1.60), chronic lung disease (OR 1.63, 95% CI 1.53–1.74), and obesity (OR 1.23, 95% CI 1.16–1.3) were associated with increased likelihood of PASC diagnosis or care at a long-COVID clinic. Characteristics associated with a lower likelihood of PASC diagnosis or care at a long-COVID clinic included younger age (18 to 29 years), male sex, non-Hispanic Black race, and comorbidities such as substance abuse, cardiomyopathy, psychosis, and dementia. More doctors per capita in the county of residence was associated with an increased likelihood of PASC diagnosis or care at a long-COVID clinic. Our findings were consistent in sensitivity analyses using a variety of analytic techniques and approaches to select controls. Conclusions This national study identified important risk factors for PASC diagnosis such as middle age, severe COVID-19 disease, and specific comorbidities. Further clinical and epidemiological research is needed to better understand underlying mechanisms and the potential role of vaccines and therapeutics in altering PASC course