1,028 research outputs found

    Short-lived lattice quasiparticles for strongly interacting fluids

    Full text link
    It is shown that lattice kinetic theory based on short-lived quasiparticles proves very effective in simulating the complex dynamics of strongly interacting fluids (SIF). In particular, it is pointed out that the shear viscosity of lattice fluids is the sum of two contributions, one due to the usual interactions between particles (collision viscosity) and the other due to the interaction with the discrete lattice (propagation viscosity). Since the latter is {\it negative}, the sum may turn out to be orders of magnitude smaller than each of the two contributions separately, thus providing a mechanism to access SIF regimes at ordinary values of the collisional viscosity. This concept, as applied to quantum superfluids in one-dimensional optical lattices, is shown to reproduce shear viscosities consistent with the AdS-CFT holographic bound on the viscosity/entropy ratio. This shows that lattice kinetic theory continues to hold for strongly coupled hydrodynamic regimes where continuum kinetic theory may no longer be applicable.Comment: 10 pages, 2 figure

    The Z-index: A geometric representation of productivity and impact which accounts for information in the entire rank-citation profile

    Get PDF
    We present a simple generalization of Hirsch's h-index, Z = \sqrt{h^{2}+C}/\sqrt{5}, where C is the total number of citations. Z is aimed at correcting the potentially excessive penalty made by h on a scientist's highly cited papers, because for the majority of scientists analyzed, we find the excess citation fraction (C-h^{2})/C to be distributed closely around the value 0.75, meaning that 75 percent of the author's impact is neglected. Additionally, Z is less sensitive to local changes in a scientist's citation profile, namely perturbations which increase h while only marginally affecting C. Using real career data for 476 physicists careers and 488 biologist careers, we analyze both the distribution of ZZ and the rank stability of Z with respect to the Hirsch index h and the Egghe index g. We analyze careers distributed across a wide range of total impact, including top-cited physicists and biologists for benchmark comparison. In practice, the Z-index requires the same information needed to calculate h and could be effortlessly incorporated within career profile databases, such as Google Scholar and ResearcherID. Because Z incorporates information from the entire publication profile while being more robust than h and g to local perturbations, we argue that Z is better suited for ranking comparisons in academic decision-making scenarios comprising a large number of scientists.Comment: 9 pages, 5 figure

    A lattice Boltzmann study of non-hydrodynamic effects in shell models of turbulence

    Get PDF
    A lattice Boltzmann scheme simulating the dynamics of shell models of turbulence is developed. The influence of high order kinetic modes (ghosts) on the dissipative properties of turbulence dynamics is studied. It is analytically found that when ghost fields relax on the same time scale as the hydrodynamic ones, their major effect is a net enhancement of the fluid viscosity. The bare fluid viscosity is recovered by letting ghost fields evolve on a much longer time scale. Analytical results are borne out by high-resolution numerical simulations. These simulations indicate that the hydrodynamic manifold is very robust towards large fluctuations of non hydrodynamic fields.Comment: 17 pages, 3 figures, submitted to Physica

    Phase-field model of long-time glass-like relaxation in binary fluid mixtures

    Full text link
    We present a new phase-field model for binary fluids exhibiting typical signatures of self-glassiness, such as long-time relaxation, ageing and long-term dynamical arrest. The present model allows the cost of building an interface to become locally zero, while preserving global positivity of the overall surface tension. An important consequence of this property, which we prove analytically, is the emergence of compact configurations of fluid density. Owing to their finite-size support, these "compactons" can be arbitrarily superposed, thereby providing a direct link between the ruggedness of the free-energy landscape and morphological complexity in configurational space. The analytical picture is supported by numerical simulations of the proposed phase-field equation.Comment: 5 Pages, 6 Figure

    Hydrodynamic Model for Conductivity in Graphene

    Get PDF
    Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of E{\cal E}, the dimensionless strength of the electric field, and provides excellent agreement with experimental data.Comment: 19 pages, 4 figure

    Derivation of the Lattice Boltzmann Model for Relativistic Hydrodynamics

    Full text link
    A detailed derivation of the Lattice Boltzmann (LB) scheme for relativistic fluids recently proposed in Ref. [1], is presented. The method is numerically validated and applied to the case of two quite different relativistic fluid dynamic problems, namely shock-wave propagation in quark-gluon plasmas and the impact of a supernova blast-wave on massive interstellar clouds. Close to second order convergence with the grid resolution, as well as linear dependence of computational time on the number of grid points and time-steps, are reported

    Quaternionic Madelung Transformation and Non-Abelian Fluid Dynamics

    Get PDF
    In the 1920's, Madelung noticed that if the complex Schroedinger wavefunction is expressed in polar form, then its modulus squared and the gradient of its phase may be interpreted as the hydrodynamic density and velocity, respectively, of a compressible fluid. In this paper, we generalize Madelung's transformation to the quaternionic Schroedinger equation. The non-abelian nature of the full SU(2) gauge group of this equation leads to a richer, more intricate set of fluid equations than those arising from complex quantum mechanics. We begin by describing the quaternionic version of Madelung's transformation, and identifying its ``hydrodynamic'' variables. In order to find Hamiltonian equations of motion for these, we first develop the canonical Poisson bracket and Hamiltonian for the quaternionic Schroedinger equation, and then apply Madelung's transformation to derive non-canonical Poisson brackets yielding the desired equations of motion. These are a particularly natural set of equations for a non-abelian fluid, and differ from those obtained by Bistrovic et al. only by a global gauge transformation. Because we have obtained these equations by a transformation of the quaternionic Schroedinger equation, and because many techniques for simulating complex quantum mechanics generalize straightforwardly to the quaternionic case, our observation leads to simple algorithms for the computer simulation of non-abelian fluids.Comment: 15 page

    Towards a unified lattice kinetic scheme for relativistic hydrodynamics

    Get PDF
    We present a systematic derivation of relativistic lattice kinetic equations for finite-mass particles, reaching close to the zero-mass ultra-relativistic regime treated in the previous literature. Starting from an expansion of the Maxwell-Juettner distribution on orthogonal polynomials, we perform a Gauss-type quadrature procedure and discretize the relativistic Boltzmann equation on space-filling Cartesian lattices. The model is validated through numerical comparison with standard benchmark tests and solvers in relativistic fluid dynamics such as Boltzmann approach multiparton scattering (BAMPS) and previous relativistic lattice Boltzmann models. This work provides a significant step towards the formulation of a unified relativistic lattice kinetic scheme, covering both massive and near-massless particles regimes
    • …
    corecore