27 research outputs found

    An OAuth2-based protocol with strong user privacy preservation for smart city mobile e-Health apps

    Get PDF
    In the context of the Smart City concept, mobile e-Health applications can play a pivotal role towards the improvement of citizens’ quality of life, since they can enable citizens to access personalized e-Health services, without limitations on time and location. However, accessing personalized e-Health services through citizens’ mobile e-Health applications, running on their mobile devices, raises many privacy issues in terms of citizens’ identity and location. These privacy issues should be addressed so that citizens, concerned about privacy leakage, will embrace Smart City mobile e-Health applications and reap their benefits. Hence, in this paper we propose an OAuth2-based protocol with strong user privacy preservation that addresses these privacy issues. Our proposed protocol follows the OAuth2 protocol flow and integrates a pseudonym-based signature scheme and a delegation signature scheme into the user authentication phase of the OAuth2 protocol. The proposed protocol enables citizens authentication towards the servers providing personalized e-Health services, while preserving their privacy from malicious mobile applications and/or eavesdroppers. Moreover, the proposed protocol does not require to store sensitive information in the citizens’ mobile devices

    A Lightweight Privacy-Preserving OAuth2-Based Protocol for Smart City Mobile Apps

    Get PDF
    In the forthcoming Smart City scenario, users' mobile applications will be of fundamental role towards supporting the envisioned functionalities and services. Mobile users, provided with a smartphone, will be capable of ubiquitously connecting to service providers through their installed mobile applications. However, this connection must be authenticated, which threatens the citizen privacy rights. Privacy-preserving mechanisms have already been proposed in the past; nevertheless, they are based on RSA groups or groups with bilinear pairings, which are inefficient in mobile devices due to its computational complexity. Thus, in this paper, we integrate a lightweight anonymous credential mechanism, suitable for computationally-limited mobile devices, into the user authentication phase of the OAuth2 protocol, which has become a de facto solution for user authentication in mobile applications. The proposed protocol enables citizen's authentication towards service providers, while preserving their privacy. Additionally, the protocol is compliant with the OAuth2 specification, which enables an easy integration in current mobile application implementations

    Physical-layer entity authentication scheme for mobile MIMO systems

    Get PDF
    Exploiting physical layer in achieving different security aspects in wireless communications has been widely encouraged. In this work, the authors propose an entity authentication scheme for mobile devices with multiple antennas, which is purely based on physical layer parameters. According to the proposed scheme, in order to authenticate a device, a number of predefined authentication signals should be detected at the receive antennas on the authenticator side. The transmitted signals are designed based on the instantaneous channel responses in order to deliver the authentication signals to the receiver. The proposed scheme works efficiently even for mobile users, which is considered a significant improvement over previous related works. Mathematical analysis of the different involved factors along with sufficient simulations show the high performance of the proposed authentication scheme

    Implementation of a pseudonym-based signature scheme with bilinear pairings on Android

    Get PDF
    Privacy preservation is of paramount importance in the emerging smart city scenario, where numerous and diverse online services will be accessed by users through their mobile or wearable devices. In this scenario, service providers or eavesdroppers can track users’ activities, location, and interactions with other users, which may discourage citizens from accessing smart city services. Pseudonym-based systems have been proposed as an efficient solution to provide identity confidentiality, and more concretely pseudonym-based signature schemes have been suggested as an effective means to authenticate entities and messages privately. In this paper we describe our implementation of a pseudonym-based signature scheme, based on bilinear-pairings. Concretely, our implementation consists of an Android application that enables users to authenticate messages under self-generated pseudonyms, while still enabling anonymity revocation by a trusted third party in case of misbehavior. The paper presents a description of the implementation, performance results, and it also describes the use cases for which it was designed

    Through the Looking-Glass: Benchmarking Secure Multi-Party Computation Comparisons for ReLU\u27s

    Get PDF
    Comparisons or Inequality Tests are an essential building block of Rectified Linear Unit functions (ReLU\u27s), ever more present in Machine Learning, specifically in Neural Networks. Motivated by the increasing interest in privacy-preserving Artificial Intelligence, we explore the current state of the art of privacy preserving comparisons over Multi-Party Computation (MPC). We then introduce constant round variations and combinations, which are compatible with customary fixed point arithmetic over MPC. Our main focus is implementation and benchmarking; hence, we showcase our contributions via an open source library, compatible with current MPC software tools. Furthermore, we include a comprehensive comparative analysis on various adversarial settings. Our results improve running times in practical scenarios. Finally, we offer conclusions about the viability of these protocols when adopted for privacy-preserving Machine Learning

    Security framework for the semiconductor supply chain environment

    Get PDF
    This paper proposes a security framework for secure data communications across the partners in the Semiconductor Supply Chain Environment. The security mechanisms of the proposed framework will be based on the SSL/TLS and OAuth 2.0 protocols, which are two standard security protocols. However, both protocols are vulnerable to a number of attacks, and thus more sophisticated security mechanisms based on these protocols should be designed and implemented in order to address the specific security challenges of the Semiconductor Supply Chain in a more effective and efficient manner
    corecore