9,741 research outputs found
Evolving turbulence and magnetic fields in galaxy clusters
We discuss, using simple analytical models and MHD simulations, the origin
and parameters of turbulence and magnetic fields in galaxy clusters. Three
physically distinct regimes can be identified in the evolution of cluster
turbulence and magnetic fields. Firstly, the fluctuation dynamo will produce
microgauss-strong, random magnetic fields during cluster formation and major
mergers. Turbulent velocity of about 300 km/s can be maintained at scales
100-200 kpc. The magnetic field is intermittent, has a smaller scale of 20-30
kpc and average strength of 2 microgauss. Secondly, when major mergers end,
turbulent speed and magnetic field undergo a power-law decay, decreasing in
strength but increasing in scale by a factor of about two. Thirdly,
smaller-mass subclusters and cluster galaxies produce turbulent wakes, with
turbulent speeds and magnetic field strengths similar to those quoted above.
The velocity scales are about 200 kpc and 10 kpc respectively, and the magnetic
field scale is about 6 times smaller. Although these wakes may fill only a
small fraction of the cluster volume, their area covering factor can be close
to unity. So one can potentially reconcile observations that indicate the
coexistence of turbulence with ordered filamentary gas structures, as in the
Perseus cluster. Random Faraday rotation measure is estimated to be typically
100-200 rad/m^2, in agreement with observations. We predict detectable
synchrotron polarization from cluster radio halos at wavelengths 3-6 cm, if
observed at sufficiently high resolution (abridged).Comment: 20 pages, 9 figures, Replaced to match version accepted by MNRA
Influence of nonequilibrium radiation and shape change on aerothermal environment of a Jovian entry body
The influence of nonequilibrium radiative energy transfer and the effect of probe configuration changes on the flow phenomena around a Jovian entry body are investigated. The radiating shock layer flow is assumed to be axisymmetric, viscous, laminar and in chemical equilibrium. The radiative transfer equations are derived under nonequilibrium conditions which include multilevel energy transitions. The equilibrium radiative transfer analysis is performed with an existing nongray radiation model which accounts for molecular band, atomic line, and continuum transitions. The nonequilibrium results are obtained with and without ablation injection in the shock layer. The nonequilibrium results are found to be greatly influenced by the temperature distribution in the shock layer. In the absence of ablative products, the convective and radiative heating to the entry body are reduced under nonequilibrium conditions. The influence of nonequilibrium is found to be greater at higher entry altitudes. With coupled ablation and carbon phenolic injection, 16 chemical species are used in the ablation layer for radiation absorption. Equilibrium and nonequilibrium results are compared under peak heating conditions
Significance of radiation models in investigating the flow phenomena around a Jovian entry body
Formulation is presented to demonstrate the significance of a simplified radiation model in investigating the flow phenomena in the viscous radiating shock layer of a Jovian entry body. The body configurations used are a 55 degree sphere cone and 50 degree hyperboloid. A nongray absorption model for hydrogen-helium gas is developed which consists of 30 steps over the spectral range of 0 to 20 eV. By employing this model, results were obtained for temperature, pressure, density, the shock layer and along the body surface. These are compared with results of two sophisticated radiative transport models available in the literature
Influence of nonequilibrium radiation and shape change on aerothermal environment of Jovian entry body
Radiative transfer equations are derived under nonequilibrium conditions which include multilevel energy transitions. The nonequalibrium results, obtained with and without ablation injection in the shock layer, are found to be greatly influenced by the temperature distribution in the shock layer. In the absence of ablative products, the convective and radiative heating to the entry body are reduced significantly under nonequilibrium conditions. The influence of nonequilibrium is found to be greater at higher entry altitudes. With coupled ablation and carbon phenolic injection, 16 chemical species are used in the ablation layer for radiation absorption. Equilibrium and nonequilibrium results are compared under peak heating conditions. A 45 degree sphere cone, a 35 degree hyperboloid, and a 45 degree ellipsoid were used to study probe shape change. Results indicate that the shock layer flow field and heat transfer to the body are influenced significantly by the probe shape change. The effect of shape change on radiative heating of the afterbodies is found to be considerably larger for the sphere cone and ellipsoid than for the hyperboloid
AdS (In)stability: Lessons From The Scalar Field
We argued in arXiv:1408.0624 that the quartic scalar field in AdS has
features that could be instructive for answering the gravitational stability
question of AdS. Indeed, the conserved charges identified there have recently
been observed in the full gravity theory as well. In this paper, we continue
our investigation of the scalar field in AdS and provide evidence that in the
Two-Time Formalism (TTF), even for initial conditions that are far from
quasi-periodicity, the energy in the higher modes at late times is
exponentially suppressed in the mode number. Based on this and some related
observations, we argue that there is no thermalization in the scalar TTF model
within time-scales that go as , where measures
the initial amplitude (with only low-lying modes excited). It is tempting to
speculate that the result holds also for AdS collapse.Comment: 10 pages, 4 figure
On Defined by Modulus
In this paper we defined the defined by a modulus and exhibit some general properties of the space with an four dimensional infinite regular matrix
The motion of bubbles inside drops in containerless processing
A theoretical model of thermocapillary bubble motion inside a drop, located in a space laboratory, due to an arbitrary axisymmetric temperature distribution on the drop surface was constructed. Typical results for the stream function and temperature fields as well as the migration velocity of the bubble were obtained in the quasistatic limit. The motion of bubbles in a rotating body of liquid was studied experimentally, and an approximate theoretical model was developed. Comparison of the experimental observations of the bubble trajectories and centering times with theoretical predictions lends qualified support to the theory
- …