44 research outputs found

    Draft Genome Sequence of JVAP01T, the Type Strain of the Novel Species Acinetobacter dijkshoorniae

    Get PDF
    Here, we report the draft genome sequence of the type strain of Acinetobacter dijkshoorniae, a novel human pathogen within the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex. Strain JVAP01T has an estimated genome size of 3.9 Mb, exhibits a 38.8% G+C content, and carries a plasmid with the blaNDM-1 carbapenemase gene

    Pathogenic Acinetobacter species including the novel Acinetobacter dijkshoorniae recovered from market meat in Peru

    Get PDF
    Species of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex are important human pathogens which can be recovered from animals and food, potential sources for their dissemination. The aim of the present study was to characterise the Acinetobacter isolates recovered from market meat samples in Peru. From July through August 2012, 138 meat samples from six traditional markets in Lima were cultured in Lysogeny and Selenite broths followed by screening of Gram-negative bacteria in selective media. Bacterial isolates were identified by MALDI-TOF MS and DNA-based methods and assessed for their clonal relatedness and antimicrobial susceptibility. Twelve Acinetobacter isolates were recovered from calf samples. All but one strain were identified as members of the clinically-relevant Acinetobacter calcoaceticus-Acinetobacter baumannii complex: 9 strains as Acinetobacter pittii, 1 strain as A. baumannii, and 1 strain as the recently described novel species A. dijkshoorniae. The remaining strain could not be identified at the species level unambiguously but all studies suggested close relatedness to A. bereziniae. All isolates were well susceptible to antibiotics. Based on macrorestriction analysis, six isolates were further selected and some of them were associated with novel MLST profiles. The presence of pathogenic Acinetobacter species in human consumption meat might pose a risk to public health as potential reservoirs for their further spread into the human population. Nevertheless, the Acinetobacter isolates from meat found in this study were not multidrug resistant and their prevalence was low. To our knowledge, this is also the first time that the A. dijkshoorniae species is reported in Peru

    Altered functional connectivity of the subthalamus and the bed nucleus of the stria terminalis in obsessive-compulsive disorder

    Get PDF
    Background: the assessment of inter-regional functional connectivity (FC) has allowed for the description of the putative mechanism of action of treatments such as deep brain stimulation (DBS) of the nucleus accumbens in patients with obsessive-compulsive disorder (OCD). Nevertheless, the possible FC alterations of other clinically-effective DBS targets have not been explored. Here we evaluated the FC patterns of the subthalamic nucleus (STN) and the bed nucleus of the stria terminalis (BNST) in patients with OCD, as well as their association with symptom severity. Methods: eighty-six patients with OCD and 104 healthy participants were recruited. A resting-state image was acquired for each participant and a seed-based analysis focused on our two regions of interest was performed using statistical parametric mapping software (SPM8). Between-group differences in FC patterns were assessed with two-sample t test models, while the association between symptom severity and FC patterns was assessed with multiple regression analyses. Results: in comparison with controls, patients with OCD showed: (1) increased FC between the left STN and the right pre-motor cortex, (2) decreased FC between the right STN and the lenticular nuclei, and (3) increased FC between the left BNST and the right frontopolar cortex. Multiple regression analyses revealed a negative association between clinical severity and FC between the right STN and lenticular nucleus. Conclusions: this study provides a neurobiological framework to understand the mechanism of action of DBS on the STN and the BNST, which seems to involve brain circuits related with motor response inhibition and anxiety control, respectively

    Spread of ST348 Klebsiella pneumoniae producing NDM-1 in a peruvian hospital

    Get PDF
    The aim of this study was to characterize carbapenem-resistant Klebsiella pneumoniae (CR-Kp) isolates recovered from adults and children with severe bacteremia in a Peruvian Hospital in June 2018. Antimicrobial susceptibility was determined by disc/gradient diffusion and broth microdilution when necessary. Antibiotic resistance mechanisms were evaluated by PCR and DNA sequencing. Clonal relatedness was assessed using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Plasmid typing was performed with a PCR-based method. Thirty CR-Kp isolates were recovered in June 2018. All isolates were non-susceptible to all -lactams, ciprofloxacin, gentamicin and trimethoprim-sulfamethoxazole, while mostly remaining susceptible to colistin, tigecycline, levofloxacin and amikacin. All isolates carried the blaNDM-1 gene and were extended spectrum -lactamase (ESBL) producers. PFGE showed four different pulsotypes although all isolates but two belonged to the ST348 sequence type, previously reported in Portugal. blaNDM-1 was located in an IncFIB-M conjugative plasmid. To our knowledge, this is the first report of an New Delhi metallo- -lactamase (NDM)-producing K. pneumoniae recovered from both children and adults in Lima, Peru, as well as the first time that the outbreak strain ST348 is reported in Peru and is associated with NDM. Studies providing epidemiological and molecular data on CR-Kp in Peru are essential to monitor their dissemination and prevent further spread

    A Methodology to Quantify Resilience in Growing Pigs

    Get PDF
    There is a growing concern about the genetic determinism of resilience and its possible implementation in breeding programs. The objective of our study was to elaborate novel resilience indicators in growing pigs based on the deviation from the expected growth curve and the increment of the acute-phase protein haptoglobin (HP) after applying a common vaccine. A total of 445 pigs were vaccinated with an attenuated Aujeszky vaccine at 12 weeks of age. Deviation from the expected body weight (DBW) given the growth curve of unvaccinated pigs at 28 days post-vaccination (DPV) and the increment of HP at 4 DPV (DHP) were suggested as resilience indicators. Challenged pigs that maintained their productivity and had a minor activation of HP were deemed resilient, whereas pigs that had low DBW values and a high activation of HP were deemed susceptible. Pigs were also classified based on DBW and DHP relative to the expected BW at 28 DPV and to the basal level of HP, respectively. The concordance was high between both methods, indicating that DBW and DHP are not sensitive to the animal's expected BW nor the basal level of HP. The heritability estimates were moderate for DBW (0.33) and low-to-moderate for DHP (0.16). Our study suggests DBW and DHP as novel resilience indicators in pigs. The suggested indicators capture different aspects of resilience, are easy to measure, and are genetically controlled. Thus, they may be improved through selective breeding. Further analyses are needed to validate our findings

    MALDI-TOF/MS identification of species from the Acinetobacter baumannii (Ab) group revisited: inclusion of the novel A. seifertii and A. dijkshoorniae species

    Get PDF
    OBJECTIVES: Rapid identification of Acinetobacter species is critical since members of the A. baumannii (Ab) group differ in antibiotic susceptibility and clinical outcomes. A. baumannii, A. pittii and A. nosocomialis can be identified by MALDI-TOF/MS, while the novel species A. seifertii and A. dijkshoorniae cannot. Low identification rates for A. nosocomialis have also been reported. We evaluated the use of MALDI-TOF/MS to identify isolates of A. seifertii and A. dijkshoorniae and revisited the identification of A. nosocomialis to update the Bruker taxonomy database. METHODS: Species characterisation was performed by rpoB-clustering and MLSA. MALDI-TOF/MS spectra were recovered from formic acid/acetonitrile bacterial extracts overlaid with alpha-cyano-4-hydroxy-cinnamic acid matrix on a MicroflexLT in linear positive mode and 2,000-20,000 m/z range mass. Spectra were examined with the ClinProTools v2.2 software. Mean spectra (MSP) were created with the BioTyper software. RESULTS: Seventy-eight Acinetobacter isolates representative of the Ab group were used to calculate the average spectra/species and generate pattern recognition models. Species-specific peaks were identified for all species, and MSPs derived from 3 A. seifertii, 2 A. dijkshoorniae and 2 A. nosocomialis strains were added to the Bruker taxonomy database, allowing successful identification of all isolates using spectra from either bacterial extracts or direct colonies, resulting in a positive predictive value (PPV) of 99.6% (777/780) and 96.8% (302/312), respectively. CONCLUSIONS: The use of post-processing data software identified statistically significant species-specific peaks to generate reference signatures for rapid accurate identification of species within the Ab group, providing relevant information for the clinical management of Acinetobacter infections

    Dynamics of Gene Expression Profiling and Identification of High-Risk Patients for Severe COVID-19

    Full text link
    The clinical manifestations of SARS-CoV-2 infection vary widely, from asymptomatic infection to the development of acute respiratory distress syndrome (ARDS) and death. The host response elicited by SARS-CoV-2 plays a key role in determining the clinical outcome. We hypothesized that determining the dynamic whole blood transcriptomic profile of hospitalized adult COVID-19 patients and characterizing the subgroup that develops severe disease and ARDS would broaden our understanding of the heterogeneity in clinical outcomes. We recruited 60 hospitalized patients with RT-PCR-confirmed SARS-CoV-2 infection, among whom 19 developed ARDS. Peripheral blood was collected using PAXGene RNA tubes within 24 h of admission and on day 7. There were 2572 differently expressed genes in patients with ARDS at baseline and 1149 at day 7. We found a dysregulated inflammatory response in COVID-19 ARDS patients, with an increased expression of genes related to pro-inflammatory molecules and neutrophil and macrophage activation at admission, in addition to an immune regulation loss. This led, in turn, to a higher expression of genes related to reactive oxygen species, protein polyubiquitination, and metalloproteinases in the latter stages. Some of the most significant differences in gene expression found between patients with and without ARDS corresponded to long non-coding RNA involved in epigenetic control

    Brain structural alterations in obsessive-compulsive disorder patients with autogenous and reactive obsessions

    Get PDF
    Obsessive-compulsive disorder (OCD) is a clinically heterogeneous condition. Although structural brain alterations have been consistently reported in OCD, their interaction with particular clinical subtypes deserves further examination. Among other approaches, a two-group classification in patients with autogenous and reactive obsessions has been proposed. The purpose of the present study was to assess, by means of a voxel-based morphometry analysis, the putative brain structural correlates of this classification scheme in OCD patients. Ninety-five OCD patients and 95 healthy controls were recruited. Patients were divided into autogenous (n = 30) and reactive (n = 65) sub-groups. A structural magnetic resonance image was acquired for each participant and pre-processed with SPM8 software to obtain a volume-modulated gray matter map. Whole-brain and voxel-wise comparisons between the study groups were then performed. In comparison to the autogenous group, reactive patients showed larger gray matter volumes in the right Rolandic operculum. When compared to healthy controls, reactive patients showed larger volumes in the putamen (bilaterally), while autogenous patients showed a smaller left anterior temporal lobe. Also in comparison to healthy controls, the right middle temporal gyrus was smaller in both patient subgroups. Our results suggest that autogenous and reactive obsessions depend on partially dissimilar neural substrates. Our findings provide some neurobiological support for this classification scheme and contribute to unraveling the neurobiological basis of clinical heterogeneity in OCD

    In vitro and in vivo Virulence Potential of the Emergent Species of the Acinetobacter baumannii (Ab) Group

    Get PDF
    The increased use of molecular identification methods and mass spectrometry has revealed that Acinetobacter spp. of the A. baumannii (Ab) group other than A. baumannii are increasingly being recovered from human samples and may pose a health challenge if neglected. In this study 76 isolates of 5 species within the Ab group (A. baumannii n = 16, A. lactucae n = 12, A. nosocomialis n = 16, A. pittii n = 20, and A. seifertii n = 12), were compared in terms of antimicrobial susceptibility, carriage of intrinsic resistance genes, biofilm formation, and the ability to kill Caenorhabditis elegans in an infection assay. In agreement with previous studies, antimicrobial resistance was common among A. baumannii while all other species were generally more susceptible. Carriage of genes encoding different efflux pumps was frequent in all species and the presence of intrinsic class D β-lactamases was reported in A. baumannii, A. lactucae (heterotypic synonym of A. dijkshoorniae) and A. pittii but not in A. nosocomialis and A. seifertii. A. baumannii and A. nosocomialis presented weaker pathogenicity in our in vitro and in vivo models than A. seifertii, A. pittii and, especially, A. lactucae. Isolates from the former species showed decreased biofilm formation and required a longer time to kill C. elegans nematodes. These results suggest relevant differences in terms of antibiotic susceptibility patterns among the members of the Ab group as well as highlight a higher pathogenicity potential for the emerging species of the group in this particular model. Nevertheless, the impact of such potential in the human host still remains to be determined

    Basolateral amygdala-ventromedial prefrontal cortex connectivity predicts cognitive behavioural therapy outcome in adults with obsessive-compulsive disorder

    Get PDF
    Background: cognitive behavioural therapy (CBT), including exposure and ritual prevention, is a first-line treatment for obsessive-compulsive disorder (OCD), but few reliable predictors of CBT outcome have been identified. Based on research in animal models, we hypothesized that individual differences in basolateral amygdala-ventromedial prefrontal cortex (BLA-vmPFC) communication would predict CBT outcome in patients with OCD. Methods: we investigated whether BLA-vmPFC resting-state functional connectivity (rs-fc) predicts CBT outcome in patients with OCD. We assessed BLA-vmPFC rs-fc in patients with OCD on a stable dose of a selective serotonin reuptake inhibitor who then received CBT and in healthy control participants. Results: we included 73 patients with OCD and 84 healthy controls in our study. Decreased BLA-vmPFC rs-fc predicted a better CBT outcome in patients with OCD and was also detected in those with OCD compared with healthy participants. Additional analyses revealed that decreased BLA-vmPFC rs-fc uniquely characterized the patients with OCD who responded to CBT. Limitations: we used a sample of convenience, and all patients were receiving pharmacological treatment for OCD. Conclusion: in this large sample of patients with OCD, BLA-vmPFC functional connectivity predicted CBT outcome. These results suggest that future research should investigate the potential of BLA-vmPFC pathways to inform treatment selection for CBT across patients with OCD and anxiety disorders
    corecore