67 research outputs found
Enterobacter bugandensis: a novel enterobacterial species associated with severe clinical infection
Nosocomial pathogens can cause life-threatening infections in neonates and immunocompromised patients. E. bugandensis (EB-247) is a recently described species of Enterobacter, associated with neonatal sepsis. Here we demonstrate that the extended spectrum betha-lactam (ESBL) producing isolate EB-247 is highly virulent in both Galleria mellonella and mouse models of infection. Infection studies in a streptomycin-treated mouse model showed that EB-247 is as efficient as Salmonella Typhimurium in inducing systemic infection and release of proinflammatory cytokines. Sequencing and analysis of the complete genome and plasmid revealed that virulence properties are associated with the chromosome, while antibiotic-resistance genes are exclusively present on a 299 kb IncHI plasmid. EB-247 grew in high concentrations of human serum indicating septicemic potential. Using whole genome-based transcriptome analysis we found 7% of the genome was mobilized for growth in serum. Upregulated genes include those involved in the iron uptake and storage as well as metabolism. The lasso peptide microcin J25 (MccJ25), an inhibitor of iron-uptake and RNA polymerase activity, inhibited EB-247 growth. Our studies indicate that Enterobacter bugandensis is a highly pathogenic species of the genus Enterobacter. Further studies on the colonization and virulence potential of E. bugandensis and its association with septicemic infection is now warranted
Kinetic and adsorption behaviour of aqueous cadmium using a 30 nm hydroxyapatite based powder synthesized via a combined ultrasound and microwave based technique
The removal of heavy metals such as cadmium from contaminated waterways and soils is a very important aspect of environmental remediation. This study investigated the kinetic and adsorption performance of a nanometre scale hydroxyapatite (HAP) synthesised from a combined ultrasound and microwave based technique for the removal of cadmium from an aqueous salt solution. Parameters such as contact time, initial pH, initial cadmium concentration and temperature were investigated. The Freundlich isotherm resulted in a more precise modelling of the communicated experimental data. Maximum monolayer adsorption capacity of absorber was found to be 123.45 mg/g at 298 K. Kinetic studies established cadmium adsorption tended to follow a pseudo-second order model and intra-particle diffusion played a significant role in determining the rate. Adsorption was endothermic, spontaneous and resulted in structural changes to the HAP matrix. The structural changes were investigated using both X-ray diffraction and field emission scanning electron microscopy
A model of management academics' intentions to influence values
Business schools face increased criticism for failing in the teaching of management studies to nurture their students’ values. Assuming that individual academics play an important role in shaping the value-related influence of business schools, I model management academics’ intentions to influence values. The suggested model encompasses academics’ economic and social values as internal variables, as well as perceived support for attempting to influence values and academic tenure as social and structural variables. A test with empirical data from 1,254 management academics worldwide reveals that perceived external support is most relevant for explaining intentions. Moreover, academics’ social values, but not their economic ones, contribute to an explanation of their intentions to influence values. The results reveal how important it is for academics to believe that their colleagues, higher education institutions, and other stakeholders support their value-related behavioral intentions
Like Will to Like: Abundances of Closely Related Species Can Predict Susceptibility to Intestinal Colonization by Pathogenic and Commensal Bacteria
The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCMcon21). 16S rRNA sequence analysis comparing LCM, LCMcon21 and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri RR strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut ecosystem. We provide evidence that this principle might be of general validity for invasion of bacteria in preformed gut ecosystems. This might be of relevance for human enteropathogen infections as well as therapeutic use of probiotic commensal bacteria
The relationship between psychiatric morbidity and quality of life: interview study of Norwegian tsunami survivors 2 and 6 years post-disaster
The Microbiota Mediates Pathogen Clearance from the Gut Lumen after Non-Typhoidal Salmonella Diarrhea
Many enteropathogenic bacteria target the mammalian gut. The mechanisms protecting the host from infection are poorly understood. We have studied the protective functions of secretory antibodies (sIgA) and the microbiota, using a mouse model for S. typhimurium diarrhea. This pathogen is a common cause of diarrhea in humans world-wide. S. typhimurium (S. tmatt, sseD) causes a self-limiting gut infection in streptomycin-treated mice. After 40 days, all animals had overcome the disease, developed a sIgA response, and most had cleared the pathogen from the gut lumen. sIgA limited pathogen access to the mucosal surface and protected from gut inflammation in challenge infections. This protection was O-antigen specific, as demonstrated with pathogens lacking the S. typhimurium O-antigen (wbaP, S. enteritidis) and sIgA-deficient mice (TCRβ−/−δ−/−, JH−/−, IgA−/−, pIgR−/−). Surprisingly, sIgA-deficiency did not affect the kinetics of pathogen clearance from the gut lumen. Instead, this was mediated by the microbiota. This was confirmed using ‘L-mice’ which harbor a low complexity gut flora, lack colonization resistance and develop a normal sIgA response, but fail to clear S. tmatt from the gut lumen. In these mice, pathogen clearance was achieved by transferring a normal complex microbiota. Thus, besides colonization resistance ( = pathogen blockage by an intact microbiota), the microbiota mediates a second, novel protective function, i.e. pathogen clearance. Here, the normal microbiota re-grows from a state of depletion and disturbed composition and gradually clears even very high pathogen loads from the gut lumen, a site inaccessible to most “classical” immune effector mechanisms. In conclusion, sIgA and microbiota serve complementary protective functions. The microbiota confers colonization resistance and mediates pathogen clearance in primary infections, while sIgA protects from disease if the host re-encounters the same pathogen. This has implications for curing S. typhimurium diarrhea and for preventing transmission
Whole Genome Sequencing of Mycobacterium tuberculosis Clinical Isolates From India Reveals Genetic Heterogeneity and Region-Specific Variations That Might Affect Drug Susceptibility
Whole genome sequencing (WGS) of Mycobacterium tuberculosis has been constructive in understanding its evolution, genetic diversity and the mechanisms involved in drug resistance. A large number of sequencing efforts from across the globe have revealed genetic diversity among clinical isolates and the genetic determinants for their resistance to anti-tubercular drugs. Considering the high TB burden in India, the availability of WGS studies is limited. Here we present, WGS results of 200 clinical isolates of M. tuberculosis from North India which are categorized as sensitive to first-line drugs, mono-resistant, multi-drug resistant and pre-extensively drug resistant isolates. WGS revealed that 20% of the isolates were co-infected with M. tuberculosis and non-tuberculous mycobacteria species. We identified 12,802 novel genetic variations in M. tuberculosis isolates including 343 novel SNVs in 38 genes which are known to be associated with drug resistance and are not currently used in the diagnostic kits for detection of drug resistant TB. We also identified M. tuberculosis lineage 3 to be predominant in the northern region of India. Additionally, several novel SNVs, which may potentially confer drug resistance were found to be enriched in the drug resistant isolates sampled. This study highlights the significance of employing WGS in diagnosis and for monitoring further development of MDR-TB strains
Is Externality a Mediator of Experience-Behaviour and Information-Action Hypothesis in Disaster Preparedness?
This study examines whether disaster experience and awareness, mediated by external locus of control, influence disaster preparedness behavior. Data were collected from 300 people in flood-prone and a further 300 in heat-wave affected areas in Orissa (a state situated in south-eastern part of India). Results reveal that prior experience of hazard events and knowledge of protective actions significantly facilitates flood and heat-wave preparedness. However, locus of control mediates this relationship. Disaster experienced and aware people characterised by having an external control were less prepared. External control partially mediates between experience–behaviour and information–action link. These findings suggest that the effects of personal experience and awareness on self-protective behaviour are weakened by external attribution
Self-esteem and sense of mastery influencing disaster preparedness behaviour
This study examines whether self-esteem and sense of mastery influence preparedness behaviour. Data were collected from 300 people each of flood prone and heat wave affected areas in Orissa. Results revealed that when the confounding effects of age and family type were controlled, people having high self-esteem and sense of mastery were more prepared for flood and heat wave. The results confirm the assumptions of ‘resource conservation’ theory that the important psychological resources like sense of mastery and self-esteem facilitate disaster preparedness. Hence, government officials and agencies responsible for community preparedness may take additional effort to enhance self-esteem and mastery of the people
Influence of Self-esteem on Ethical Behaviours and Corporate Responsibility Values: The Mediating Role of Power-distance
- …
