1,549 research outputs found
Recommended from our members
Efficient Debanding Filtering for Inverse Tone Mapped High Dynamic Range Videos
DYNAMIC RESOURCE ALLOCATION FOR MULTIUSER VIDEO STREAMING
With the advancement of video compression technology and wide deployment of wired/wireless networks, there is an increasing demand of multiuser video communication services. A multiuser video transmission system should consider not only the reconstructed video quality in the individual-user level but also the service objectives among all users on the network level. There are many design challenges to support multiuser video communication services, such as fading channels, limited radio resources of wireless networks, heterogeneity of video content complexity, delay and decoding dependency constraints of video bitstreams, and mixed integer optimization. To overcome these challenges, a general strategy is to dynamically allocate resources according to the changing environments and requirements, so as to improve the overall system performance and ensure quality of service (QoS) for each user.
In this dissertation, we address the aforementioned design challenges from a resource-allocation point of view and two aspects of system and algorithm designs, namely, a cross-layer design that jointly optimizes resource utilization from physical layer to application layer, and multiuser diversity that explores the source and channel heterogeneity among different users. We also address the impacts on systems caused by dynamic environment along time domain and consider the time-heterogeneity of video sources and time-varying characteristics of channel conditions. To achieve the desired service objectives, a general resource allocation framework is formulated in terms of constrained optimization problems to dynamically allocate resources and control the quality of multiple video bitstreams.
Based on the design methodology of multiuser cross-layer optimization, we propose several systems to efficiently transmit multiple video streams, encoded by current and emerging video codecs, over major types of wireless networks such as 3G cellular system, Wireless Local Area Network, 4G cellular system, and future Wireless Metropolitan Area Networks. Owing to the integer nature of some system parameters, the formulated optimization problems are often integer or mixed integer programming problem and involve high computation to search the optimal solutions. Fast algorithms are proposed to provide real-time services. We demonstrate the advantages of dynamic and joint resource allocation for multiple video sources compared to static strategy. We also show the improvement of exploring diversity on frequency, time, and transmission path, and the benefits from multiuser cross-layer optimization
Role of spinal cord alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in complete Freund's adjuvant-induced inflammatory pain
Spinal cord α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) mediate acute spinal processing of nociceptive and non-nociceptive information, but whether and how their activation contributes to the central sensitization that underlies persistent inflammatory pain are still unclear. Here, we examined the role of spinal AMPARs in the development and maintenance of complete Freund's adjuvant (CFA)-induced persistent inflammatory pain. Intrathecal application of two selective non-competitive AMPAR antagonists, CFM-2 (25 and 50 ÎŒg) and GYKI 52466 (50 ÎŒg), significantly attenuated mechanical and thermal hypersensitivities on the ipsilateral hind paw at 2 and 24 h post-CFA injection. Neither CFM-2 nor GYKI 52466 affected the contralateral basal responses to thermal and mechanical stimuli. Locomotor activity was not altered in any of the drug-treated animals. CFA-induced inflammation did not change total expression or distribution of AMPAR subunits GluR1 and GluR2 in dorsal horn but did alter their subcellular distribution. The amount of GluR2 was markedly increased in the crude cytosolic fraction and decreased in the crude membrane fraction from the ipsilateral L4â5 dorsal horn at 24 h (but not at 2 h) post-CFA injection. Conversely, the level of GluR1 was significantly decreased in the crude cytosolic fraction and increased in the crude membrane fraction from the ipsilateral L4â5 dorsal horn at 24 h (but not at 2 h) post-CFA injection. These findings suggest that spinal AMPARs might participate in the central spinal mechanism of persistent inflammatory pain
Stabilizing a three-center single-electron metalâmetal bond in a fullerene cage
Trimetallic carbide clusterfullerenes (TCCFs) encapsulating a quinary M3C2 cluster represent a special family of endohedral fullerenes with an open-shell electronic configuration. Herein, a novel TCCF based on a medium-sized rare earth metal, dysprosium (Dy), is synthesized for the first time. The molecular structure of Dy3C2@Ih(7)-C80 determined by single crystal X-ray diffraction shows that the encapsulated Dy3C2 cluster adopts a bat ray configuration, in which the acetylide unit C2 is elevated above the Dy3 plane by âŒ1.66 Ă
, while DyâDy distances are âŒ3.4 Ă
. DFT computational analysis of the electronic structure reveals that the endohedral cluster has an unusual formal charge distribution of (Dy3)8+(C2)2â@C806â and features an unprecedented three-center single-electron DyâDyâDy bond, which has never been reported for lanthanide compounds. Moreover, this electronic structure is different from that of the analogous Sc3C2@Ih(7)-C80 with a (Sc3)9+(C2)3â@C806â charge distribution and no metalâmetal bonding
Infall and outflow detections in a massive core JCMT 18354-0649S
We present a high-resolution study of a massive dense core JCMT 18354-0649S
with the Submillimeter Array. The core is mapped with continuum emission at 1.3
mm, and molecular lines including CHOH (-) and HCN (3-2).
The dust core detected in the compact configuration has a mass of and a diameter of 2\arcsec (0.06 pc), which is further resolved
into three condensations with a total mass of under higher
spatial resolution. The HCN (3-2) line exhibits asymmetric profile consistent
with infall signature. The infall rate is estimated to be yr. The high velocity HCN (3-2) line wings present an
outflow with three lobes. Their total mass is and total momentum
is km s, respectively. Analysis shows that the
N-bearing molecules especially HCN can trace both inflow and outflow.Comment: 21 pages, 7 figure
Training Sequence Design for Efficient Channel Estimation in MIMO-FBMC Systems
This paper is focused on training sequence design for efficient channel estimation in multiple-input multiple-output filterbank multicarrier (MIMO-FBMC) communications using offset quadrature amplitude modulation (OQAM). MIMO-FBMC is a promising technique to achieve high spectrum efficiency as well as strong robustness against dispersive channels due to its feature of time-frequency localization. A salient drawback of FBMC/OQAM signals is that only real-field orthogonality can be kept, leading to the intrinsic imaginary interference being a barrier for high-performance channel estimations. Also, conventional channel estimations in the MIMO-FBMC systems mostly suffer from high training overhead especially for large number of transmit antennas. Motivated by these problems, in this paper, we propose a new class of training sequences, which are formed by concatenation of two identical zero-correlation zone sequences whose auto-correlation and cross correlation are zero within a time-shift window around the in-phase position. Since only real-valued symbols can be transmitted in MIMO-FBMC systems, we propose âcomplex training sequence decomposition (CTSD)â to facilitate the reconstruction of the complex-field orthogonality of MIMO-FBMC signals. Our simulations validate that the proposed CTSD is an efficient channel estimation approach for practical preamble-based MIMO-FBMC systems
- âŠ