235 research outputs found

    Feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas

    Get PDF
    Surface errors on parabolic reflector antennas degrade the overall performance of the antenna. The errors are in the form of roughness on the surface, distortions in the shape, or structural design details. They cause amplitude and phase errors in the aperture field which lower the gain, raise the sidelobes, and fill in the nulls. These are major problems in large space reflector antennas. Planned mobile satellite communications systems having limited signal margin need high gain from the space reflectors. Future multiple beam antenna systems requiring spatial isolation to allow frequency reuse could be rendered useless if high sidelobes are present. High sidelobes are also responsible for noise. Ways of compensating for surface errors by pattern synthesis using an array of feed antennas are examined. Pattern corrections are directed specifically toward portions of the pattern requiring improvements. The pattern synthesis does not require knowledge of the surface errors. Both the amplitude and phase of the high side lobes caused by the distortion are required

    Feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas

    Get PDF
    Surface errors on parabolic reflector antennas degrade the overall performance of the antenna. Space antenna structures are difficult to build, deploy and control. They must maintain a nearly perfect parabolic shape in a harsh environment and must be lightweight. Electromagnetic compensation for surface errors in large space reflector antennas can be used to supplement mechanical compensation. Electromagnetic compensation for surface errors in large space reflector antennas has been the topic of several research studies. Most of these studies try to correct the focal plane fields of the reflector near the focal point and, hence, compensate for the distortions over the whole radiation pattern. An alternative approach to electromagnetic compensation is presented. The proposed technique uses pattern synthesis to compensate for the surface errors. The pattern synthesis approach uses a localized algorithm in which pattern corrections are directed specifically towards portions of the pattern requiring improvement. The pattern synthesis technique does not require knowledge of the reflector surface. It uses radiation pattern data to perform the compensation

    Synthesis of multiple shaped beam antenna patterns

    Get PDF
    Results are presented of research into the problem of finding an excitation of a given antenna such that the desired radiation pattern is approximated to within acceptable limits. This is to be done in such a fashion that boundary conditions involving hardware limitations may be inserted into the problem. The intended application is synthesis of multiple shaped beam antennas. Since this is perhaps the most difficult synthesis problem an antenna engineer is likely to encounter, the approach taken was to include as a by-product capability for synthesizing simpler patterns. The synthesis technique has been almost totally computerized. The class of antennas which may be synthesized with the computer program are those which may be represented as planar (continuous or discrete) current distributions. The technique is not limited in this sense and could indeed by extended to include, for example, the synthesis of conformal arrays or current distributions on the surface of reflectors. The antenna types which the program is set up to synthesize are: line source, rectangular aperture, circular aperture, linear array, rectangular array, and arbitrary planar array

    Millimeter wave propagation modeling of inhomogeneous rain media for satellite communications systems

    Get PDF
    A theoretical propagation model that represents the scattering properties of an inhomogeneous rain often found on a satellite communications link is presented. The model includes the scattering effects of an arbitrary distribution of particle type (rain or ice), particle shape, particle size, and particle orientation within a given rain cell. An associated rain propagation prediction program predicts attenuation, isolation and phase shift as a function of ground rain rate. A frequency independent synthetic storm algorithm is presented that models nonuniform rain rates present on a satellite link. Antenna effects are included along with a discussion of rain reciprocity. The model is verified using the latest available multiple frequency data from the CTS and COMSTAR satellites. The data covers a wide range of frequencies, elevation angles, and ground site locations

    Millimeter wave satellite communication studies. Results of the 1981 propagation modeling effort

    Get PDF
    Theoretical modeling associated with rain effects on millimeter wave propagation is detailed. Three areas of work are discussed. A simple model for prediction of rain attenuation is developed and evaluated. A method for computing scattering from single rain drops is presented. A complete multiple scattering model is described which permits accurate calculation of the effects on dual polarized signals passing through rain

    The influence of polarization on millimeter wave propagation through rain

    Get PDF
    The influence of polarization on millimeter wave propagation is investigated from both an experimental and a theoretical viewpoint. First, previous theoretical and experimental work relating to the attenuation and depolarization of millimeter waves by rainfall is discussed. Considerable detail is included in the literature review. Next, a theoretical model is developed to predict the cross polarization level during rainfall from the path average rain rate and the scattered field from a single raindrop. Finally, data from the VPI and SU depolarization experiment are presented as verification of the new model, and a comparison is made with other theories and experiments. Aspects of the new model are: (1) spherical rather than plane waves are assumed, (2) the average drop diameter is used rather than a drop size distribution, and (3) it is simple enough so that the effect which changing one or more parameters has on the crosspolarization level is easily seen

    Confined one-way mode at magnetic domain wall for broadband high-efficiency one-way waveguide, splitter and bender

    Full text link
    We find the one-way mode can be well-confined at the magnetic domain wall by the photonic bandgap of gyromagnetic bulk material. Utilizing the well-confined one-way mode at the domain wall, we demonstrate the photonic one-way waveguide, splitter and bender can be realized with simple structures, which are predicted to be high-efficiency, broadband, frequency-independent, reflection-free, crosstalk-proof and robustness against disorder. Additionally, we find that the splitter and bender in our proposal can be transformed into each other with magnetic control, which may have great potential applications in all photonic integrated circuit.Comment: Appl. Phys. Lett. 100, 041108 (2012); (4 pages

    Research in LMSS propagation

    Get PDF
    The Virginia Tech Satellite Communications Group has participated in the Land Mobile Satellite System (LMSS) program through JPL sponsorship since 1985. Involvement has mainly been in modeling and simulation of propagation characteristics and effects. Models developed to predict cummulative fade distributions for fading LMSS signals include LMSSMOD and the Simple Models which approximate LMSSMOD. Models to predict the mean and standard deviation of signal attenuation through roadside vegetation, namely the Average Path Model, were developed. In the area of simulation, efforts have centered around the development of a software simulator that uses data bases derived from experimental data to generate simulated data with arbitrary statistical behavior. This work has progressed to the development of an integrated analysis and simulation package, LIPS. The basic theory and results for the models and simulator have been previously documented in reports and papers. All LMSS activities are summarized and details of this year's efforts are given

    LMSS propagation modeling at Virginia Tech

    Get PDF
    Recent efforts in the modeling of land mobile satellite systems are reported. These include descriptions of a simple model for prediction of fading statistics, a propagation simulator, and results from studies using the simulator. Predictions are compared to available measured data

    Polarization effects in millimeter wave propagation through rain: A review of present theory and a discussion of current experiments

    Get PDF
    An attempt was made to calculate the depolarization effects of rain on linearly or elliptically polarized millimeter waves. Results are given in graphs and tables
    corecore