19 research outputs found

    Molecular Cloud Structure in the Magellanic Clouds: Effect of Metallicity

    Get PDF
    The chemical structure of neutral clouds in low metallicity environments is examined with particular emphasis on the H to H_2 and C+ to CO transitions. We observed near-IR H_2 lines and the CO J=1-0 line from 30 Doradus and N159/N160 in the Large Magellanic Cloud and from DEM S 16, DEM S 37, and LI-SMC 36 in the Small Magellanic Cloud. We find that the H_2 emission is UV-excited and that (weak) CO emission always exists (in our surveyed regions) toward positions where H_2 and [CII] emission have been detected. Using a PDR code and a radiative transfer code, we simulate the emission of line radiation from spherical clouds and from large planar clouds. Because the [CII] emission and H_2 emission arise on the surface of the cloud and the lines are optically thin, these lines are not affected by changes in the relative sizes of the neutral cloud and the CO bearing core, while the optically thick CO emission can be strongly affected. The sizes of clouds are estimated by measuring the deviation of CO emission strength from that predicted by a planar cloud model of a given size. The average cloud column density and therefore size increases as the metallicity decreases. Our result agrees with the photoionization regulated star formation theory by Mc Kee (1989).Comment: 45 Pages including 15 figures. To be published in the ApJ May 10, 1998 issue, Vol. 49

    The effects of star formation on the low-metallicity ISM: NGC4214 mapped with Herschel/PACS spectroscopy

    Full text link
    We present Herschel/PACS spectroscopic maps of the dwarf galaxy NC4214 observed in 6 far infrared fine-structure lines: [C II] 158mu, [O III] 88mu, [O I] 63mu, [O I] 146mu, [N II] 122mu, and [N II] 205mu. The maps are sampled to the full telescope spatial resolution and reveal unprecedented detail on ~ 150 pc size scales. We detect [C II] emission over the whole mapped area, [O III] being the most luminous FIR line. The ratio of [O III]/[C II] peaks at about 2 toward the sites of massive star formation, higher than ratios seen in dusty starburst galaxies. The [C II]/CO ratios are 20 000 to 70 000 toward the 2 massive clusters, which are at least an order of magnitude larger than spiral or dusty starbursts, and cannot be reconciled with single-slab PDR models. Toward the 2 massive star-forming regions, we find that L[CII] is 0.5 to 0.8% of the LTIR . All of the lines together contribute up to 2% of LTIR . These extreme findings are a consequence of the lower metallicity and young, massive-star formation commonly found in dwarf galaxies. These conditions promote large-scale photodissociation into the molecular reservoir, which is evident in the FIR line ratios. This illustrates the necessity to move to multiphase models applicable to star-forming clusters or galaxies as a whole.Comment: Accepted for publication in the A&A Herschel Special Issu

    The Orion molecular cloud and star forming region

    No full text
    SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Photodissociation regions Proceedings

    No full text
    SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore