150 research outputs found

    4-Bromo­seleno­anisole

    Get PDF
    The title compound, 1-bromo-4-methyl­seleno­benzene, C7H7BrSe, was prepared by methyl­ation of 4-bromo­seleno­phenolate with methyl iodide, and crystals suitable for structure determination were obtained by sublimation. The mol­ecule is essentially planar; the Se—Me bond is rotated by only 2.59 (19)° out of the least-squares plane of the benzene ring. The most pronounced intermolecular interactions are two hydrogen bonds of the type C—H⋯π, which determine a herring-bone pattern in the crystal packing

    Deterministic assembly of linear gold nanorod chains as a platform for nanoscale applications

    Get PDF
    We demonstrate a method to assemble gold nanorods highly deterministically into a chain formation by means of directed capillary assembly. This way we achieved straight chains consisting of end-to-end aligned gold nanorods assembled in one specific direction with well-controlled gaps of [similar]6 nm between the individual constituents. We determined the conditions for optimum quality and yield of nanorod chain assembly by investigating the influence of template dimensions and assembly temperature. In addition, we transferred the gold nanorod chains from the assembly template onto a Si/SiO2 target substrate, thus establishing a platform for a variety of nanoscale electronic and optical applications ranging from molecular electronics to optical and plasmonic devices. As a first example, electrical measurements are performed on contacted gold nanorod chains before and after their immersion in a solution of thiol end-capped oligophenylenevinylene molecules showing an increase in the conductance by three orders of magnitude, indicating molecular-mediated transport

    1,4-Bis(4-chlorophenylseleno)-2,5-dimethoxybenzene

    Get PDF
    The title compound, C20H16Cl2O2Se2, utilizes the symmetry of the crystallographic inversion center. Molecular chains are formed through symmetric C—H...Cl interactions around inversion centers, mimicking the commonly observed symmetric hydrogen-bonded dimer pattern often found in carboxylic acids

    Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO3_3

    Get PDF
    Inelastic neutron scattering has been used to study the magneto-elastic excitations in the multiferroic manganite hexagonal YMnO3_3. An avoided crossing is found between magnon and phonon modes close to the Brillouin zone boundary in the (a,b)(a,b)-plane. Neutron polarization analysis reveals that this mode has mixed magnon-phonon character. An external magnetic field along the cc-axis is observed to cause a linear field-induced splitting of one of the spin wave branches. A theoretical description is performed, using a Heisenberg model of localized spins, acoustic phonon modes and a magneto-elastic coupling via the single-ion magnetostriction. The model quantitatively reproduces the dispersion and intensities of all modes in the full Brillouin zone, describes the observed magnon-phonon hybridized modes, and quantifies the magneto-elastic coupling. The combined information, including the field-induced magnon splitting, allows us to exclude several of the earlier proposed models and point to the correct magnetic ground state symmetry, and provides an effective dynamic model relevant for the multiferroic hexagonal manganites.Comment: 12 pages, 10 figure

    The Challenge of Synthesizing Oligomers for Molecular Wires

    Get PDF
    Controlling the size of the oligomer and introducing functional groups at the ends of the oligomer that allow it to react with separate electrodes are critical issues when preparing materials for molecular wires. We demonstrate a general synthetic approach to oligophenylenevinylene (OPV) derivative molecules with a molecular length up to 9–10 nm which allow for the introduction of aromatic thioacetate functionality in fully conjugated oligomer systems. Oligomers containing 3–15 phenyl units were synthesized by step wise Horner-Wadsworth-Emmons (HWE) reactions of a bifunctional OPV-monomer, which demonstrated good control of the size of the OPVs. Workup after each reaction step ensures a high purity of the final products. End group functionalization was introduced as a last step
    • …
    corecore