201 research outputs found
Adsorption of potassium on Cr<sub>2</sub>O<sub>3</sub>(0001) at ionic and metallic coverages and uv-laser-induced desorption
Translational energy distributions of neutral potassium atoms are reported as a function of potassium coverage after uv-laser-induced desorption from well-characterized adsorption sites on an epitaxial film of Cr2O3(0001)/Cr(110). Measurements using x-ray photoelectron spectroscopy, low-energy electron diffraction, and work-function measurements revealed that potassium adsorbs in a nonmetallic phase for deposition temperatures around 280–300 K allowing only a maximal saturation coverage to be grown for moderate growth rates. Aggregates are observed after deposition at 90 K; at this temperature any layer thickness is obtainable. The uv-laser-induced desorption for these two different phases was studied using excitation energies of 3.5 eV, 5.0 eV, and 6.4 eV and (1+1)-resonantly enhanced multiphonon ionization via the 6p2P state for detection. Desorption of potassium atoms from the nonmetallic phase proves to be ten times [σ(6.4eV)=(2±1)×10−19cm2] more efficient than desorption from metallic potassium aggregates. The mechanism of desorption from the nonmetallic phase appears to be the inverse harpooning process starting with an ion pair followed by a transfer of hot electrons from the substrate to unoccupied potassium states to neutralize the initially positively charged potassium. The maximum of the translational energy distribution (starting at 0.65 eV for low coverages) decreases with increasing potassium coverage and is by a factor of approximately 4 smaller for desorption from large potassium aggregates (0.16 eV). The decrease of the translational energy with increasing coverages for isolated atoms is ascribed to an increasing lateral interaction between the adsorbates and a concomittant smooth change of the ionicity of the atoms from partially ionic to neutral
Neutron-skin thickness of Pb, and symmetry-energy constraints from the study of the anti-analog giant dipole resonance
The Pb(,) Pb reaction at a beam energy of
30 MeV has been used to excite the anti-analog of the giant dipole resonance
(AGDR) and to measure its -decay to the isobaric analog state in
coincidence with proton decay of IAS. The energy of the transition has also
been calculated with the self-consistent relativistic random-phase
approximation (RRPA), and found to be linearly correlated to the predicted
value of the neutron-skin thickness (). By comparing the
theoretical results with the measured transition energy, the value of 0.190
0.028 fm has been determined for of Pb, in
agreement with previous experimental results. The AGDR excitation energy has
also been used to calculate the symmetry energy at saturation (
MeV) and the slope of the symmetry energy ( MeV), resulting in
more stringent constraints than most of the previous studies.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with
arXiv:1205.232
Characterization of Large Volume 3.5 x 8 inches LaBr3:Ce Detectors
The properties of large volume cylindrical 3.5 x 8 inches (89 mm x 203 mm)
LaBr3:Ce scintillation detectors coupled to the Hamamatsu R10233-100SEL
photo-multiplier tube were investigated. These crystals are among the largest
ones ever produced and still need to be fully characterized to determine how
these detectors can be utilized and in which applications. We tested the
detectors using monochromatic gamma-ray sources and in-beam reactions producing
gamma rays up to 22.6 MeV; we acquired PMT signal pulses and calculated
detector energy resolution and response linearity as a function of gamma-ray
energy. Two different voltage dividers were coupled to the Hamamatsu
R10233-100SEL PMT: the Hamamatsu E1198-26, based on straightforward resistive
network design, and the LABRVD, specifically designed for our large volume
LaBr3:Ce scintillation detectors, which also includes active semiconductor
devices. Because of the extremely high light yield of LaBr3:Ce crystals we
observed that, depending on the choice of PMT, voltage divider and applied
voltage, some significant deviation from the ideally proportional response of
the detector and some pulse shape deformation appear. In addition, crystal
non-homogeneities and PMT gain drifts affect the (measured) energy resolution
especially in case of high-energy gamma rays. We also measured the time
resolution of detectors with different sizes (from 1x1 inches up to 3.5x8
inches), correlating the results with both the intrinsic properties of PMTs and
GEANT simulations of the scintillation light collection process. The detector
absolute full energy efficiency was measured and simulated up to gamma-rays of
30 Me
Resonance phenomena in ultracold dipole-dipole scattering
Elastic scattering resonances occurring in ultracold collisions of either
bosonic or fermionic polar molecules are investigated. The Born-Oppenheimer
adiabatic representation of the two-bodydynamics provides both a qualitative
classification scheme and a quantitative WKB quantization condition that
predicts several sequences of resonant states. It is found that the
near-threshold energy dependence of ultracold collision cross sections varies
significantly with the particle exchange symmetry, with bosonic systems showing
much smoother energy variations than their fermionic counterparts. Resonant
variations of the angular distributions in ultracold collisions are also
described.Comment: 19 pages, 6 figures, revtex4, submitted to J. Phys.
Laser cooling of a diatomic molecule
It has been roughly three decades since laser cooling techniques produced
ultracold atoms, leading to rapid advances in a vast array of fields.
Unfortunately laser cooling has not yet been extended to molecules because of
their complex internal structure. However, this complexity makes molecules
potentially useful for many applications. For example, heteronuclear molecules
possess permanent electric dipole moments which lead to long-range, tunable,
anisotropic dipole-dipole interactions. The combination of the dipole-dipole
interaction and the precise control over molecular degrees of freedom possible
at ultracold temperatures make ultracold molecules attractive candidates for
use in quantum simulation of condensed matter systems and quantum computation.
Also ultracold molecules may provide unique opportunities for studying chemical
dynamics and for tests of fundamental symmetries. Here we experimentally
demonstrate laser cooling of the molecule strontium monofluoride (SrF). Using
an optical cycling scheme requiring only three lasers, we have observed both
Sisyphus and Doppler cooling forces which have substantially reduced the
transverse temperature of a SrF molecular beam. Currently the only technique
for producing ultracold molecules is by binding together ultracold alkali atoms
through Feshbach resonance or photoassociation. By contrast, different proposed
applications for ultracold molecules require a variety of molecular
energy-level structures. Our method provides a new route to ultracold
temperatures for molecules. In particular it bridges the gap between ultracold
temperatures and the ~1 K temperatures attainable with directly cooled
molecules (e.g. cryogenic buffer gas cooling or decelerated supersonic beams).
Ultimately our technique should enable the production of large samples of
molecules at ultracold temperatures for species that are chemically distinct
from bialkalis.Comment: 10 pages, 7 figure
Exploring 4D Quantum Hall Physics with a 2D Topological Charge Pump
The discovery of topological states of matter has profoundly augmented our
understanding of phase transitions in physical systems. Instead of local order
parameters, topological phases are described by global topological invariants
and are therefore robust against perturbations. A prominent example thereof is
the two-dimensional integer quantum Hall effect. It is characterized by the
first Chern number which manifests in the quantized Hall response induced by an
external electric field. Generalizing the quantum Hall effect to
four-dimensional systems leads to the appearance of a novel non-linear Hall
response that is quantized as well, but described by a 4D topological invariant
- the second Chern number. Here, we report on the first observation of a bulk
response with intrinsic 4D topology and the measurement of the associated
second Chern number. By implementing a 2D topological charge pump with
ultracold bosonic atoms in an angled optical superlattice, we realize a
dynamical version of the 4D integer quantum Hall effect. Using a small atom
cloud as a local probe, we fully characterize the non-linear response of the
system by in-situ imaging and site-resolved band mapping. Our findings pave the
way to experimentally probe higher-dimensional quantum Hall systems, where new
topological phases with exotic excitations are predicted
Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering
Synthetic magnetism has been used to control charge neutral excitations for
applications ranging from classical beam steering to quantum simulation. In
optomechanics, radiation-pressure-induced parametric coupling between optical
(photon) and mechanical (phonon) excitations may be used to break time-reversal
symmetry, providing the prerequisite for synthetic magnetism. Here we design
and fabricate a silicon optomechanical circuit with both optical and mechanical
connectivity between two optomechanical cavities. Driving the two cavities with
phase-correlated laser light results in a synthetic magnetic flux, which in
combination with dissipative coupling to the mechanical bath, leads to
nonreciprocal transport of photons with 35dB of isolation. Additionally,
optical pumping with blue-detuned light manifests as a particle non-conserving
interaction between photons and phonons, resulting in directional optical
amplification of 12dB in the isolator through direction. These results indicate
the feasibility of utilizing optomechanical circuits to create a more general
class of nonreciprocal optical devices, and further, to enable novel
topological phases for both light and sound on a microchip.Comment: 18 pages, 8 figures, 4 appendice
Characterization of Large Volume 3.5″ x 8″ LaBr3:Ce Detectors for the HECTOR+ array
A selection of the properties of large volume, cylindrical 3.5" x 8" LaBr 3 :Ce scintillation detectors coupled to a 3.5" PMT (model R10233-1000SEL from HAMAMATSU) and a special designed Voltage Divider (LABRVD) will be discussed. A number of 10 of such detectors constitute the HECTOR + array which, in fall 2012, measured at GSI coupled to the AGATA DEMOSTRATOR at the PRESPEC experimental setup. These crystals are among the largest ever produced and needed to be characterized. We have performed several tests and here we discuss, in particular, the energy resolution measured using monochromatic γ −ray sources and in-beam reactions producing γ −rays up to 22.6 MeV. As already measured in two previous works a saturation in the energy resolution was observed in case of high energy gamma rays. Crystal non-homogeneities and PMT gain drifts can affect the resolution of measurements especially in case of high energy γ −rays
The ASY-EOS experiment at GSI: investigating the symmetry energy at supra-saturation densities
The elliptic-flow ratio of neutrons with respect to protons in reactions of
neutron rich heavy-ions systems at intermediate energies has been proposed as
an observable sensitive to the strength of the symmetry term in the nuclear
Equation Of State (EOS) at supra-saturation densities. The recent results
obtained from the existing FOPI/LAND data for Au+Au collisions
at 400 MeV/nucleon in comparison with the UrQMD model allowed a first estimate
of the symmetry term of the EOS but suffer from a considerable statistical
uncertainty. In order to obtain an improved data set for Au+Au collisions and
to extend the study to other systems, a new experiment was carried out at the
GSI laboratory by the ASY-EOS collaboration in May 2011.Comment: Talk given by P. Russotto at the 11th International Conference on
Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1,
2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference
Series (JPCS
- …