5 research outputs found

    Loss of native rocky reef biodiversity in Australian metropolitan embayments

    No full text
    Urbanisation of the coastal zone represents a key threat to marine biodiversity, including rocky reef communities which often possess disproportionate ecological, recreational and commercial importance. The nature and magnitude of local urban impacts on reef biodiversity near three Australian capital cities were quantified using visual census methods. The most impacted reefs in urbanised embayments were consistently characterised by smaller, faster growing species, reduced fish biomass and richness, and reduced mobile invertebrate abundance and richness. Reef faunal distribution varied significantly with heavy metals, local population density, and proximity to city ports, while native fish and invertebrate communities were most depauperate in locations where invasive species were abundant. Our study adds impetus for improved urban planning and pollution management practises, while also highlighting the potential for skilled volunteers to improve the tracking of changes in marine biodiversity values and the effectiveness of management intervention

    Statistical solutions for error and bias in global citizen science datasets

    Get PDF
    Networks of citizen scientists (CS) have the potential to observe biodiversity and species distributions at global scales. Yet the adoption of such datasets in conservation science may be hindered by a perception that the data are of low quality. This perception likely stems from the propensity of data generated by CS to contain greater levels of variability (e.g., measurement error) or bias (e.g., spatio-temporal clustering) in comparison to data collected by scientists or instruments. Modern analytical approaches can account for many types of error and bias typical of CS datasets. It is possible to (1) describe how pseudo-replication in sampling influences the overall variability in response data using mixed-effects modeling, (2) integrate data to explicitly model the sampling process and account for bias using a hierarchical modeling framework, and (3) examine the relative influence of many different or related explanatory factors using machine learning tools. Information from these modeling approaches can be used to predict species distributions and to estimate biodiversity. Even so, achieving the full potential from CS projects requires meta-data describing the sampling process, reference data to allow for standardization, and insightful modeling suitable to the question of interest

    Reef Life Survey: Establishing the ecological basis for conservation of shallow marine life

    No full text
    Este artículo contiene 14 páginas, 7 figuras.Reef Life Survey (RLS) provides a new model for ecological monitoring through training experienced recreational divers in underwater visual census methods to the level of skilled scientists. Detail produced is similar to that of programs with professional scientific teams, at low cost to allow global coverage. RLS differs from most other citizen science initiatives in its emphasis on rigorous training and data quality rather than open participation, selectively involving the most skilled and committed members. Volunteers participate primarily because they appreciate the close relationship with scientists, other divers, and managers, and see their efforts directly contributing to improved environmental outcomes. RLS works closely with Australian management agencies, scheduling annual events at core monitoring sites associated with 10 inshore marine protected areas Australiawide. Surveys of 12 offshore Australian Marine Parks (AMPs) are realized through 2–4 week voyages in a sailing catamaran crewed by volunteers. Across the AMP network, RLS surveys have quantified densities of fishes, mobile invertebrates, macroalgae and corals at 350 shallow coral reef sites (180 sites surveyed on two or more occasions), providing an understanding of (i) population changes amongst threatened species including sea snakes, (ii) responses of fish and invertebrate populations following fisheries closures, (iii) ecosystem-wide impacts of marine heat-waves, and (iv) the extent that AMPs spanning the network comprehensively encompass national coral reef biodiversity. This scientist/volunteer/manager collaboration could be greatly expanded globally (presently 3537 sites in 53 countries).Reef Life Survey Foundation has been sustained through grants from the Ian Potter Foundation and Minderoo Foundation, reporting contracts from Parks Australia, and administrative and analytical support from the University of Tasmania. The RLS program was established through a grant to GJE through the former Commonwealth Environment Research Facilities Program. Analyses were supported by the Australian Research Council and the Marine Biodiversity Hub, a collaborative partnership supported through the Australian Government’s National Environmental Science Program. Additional advice and assistance have been provided by the Department for Environment and Water (South Australia), Department of Primary Industries, Parks, Water and Environment (Tasmania), Department of Primary Industries (New South Wales), Department of Biodiversity, Conservation and Attractions (Western Australia), and Parks Victoria. Data management and distribution is supported through the Integrated Marine Observing System.Peer reviewe

    Integrating abundance and functional traits reveals new global hotspots of fish diversity

    Get PDF
    Species richness has dominated our view of global biodiversity patterns for centuries1, 2. The dominance of this paradigm is reflected in the focus by ecologists and conservation managers on richness and associated occurrence-based measures for understanding drivers of broad-scale diversity patterns and as a biological basis for management3, 4. However, this is changing rapidly, as it is now recognized that not only the number of species but the species present, their phenotypes and the number of individuals of each species are critical in determining the nature and strength of the relationships between species diversity and a range of ecological functions (such as biomass production and nutrient cycling)5. Integrating these measures should provide a more relevant representation of global biodiversity patterns in terms of ecological functions than that provided by simple species counts. Here we provide comparisons of a traditional global biodiversity distribution measure based on richness with metrics that incorporate species abundances and functional traits. We use data from standardized quantitative surveys of 2,473 marine reef fish species at 1,844 sites, spanning 133 degrees of latitude from all ocean basins, to identify new diversity hotspots in some temperate regions and the tropical eastern Pacific Ocean. These relate to high diversity of functional traits amongst individuals in the community (calculated using Rao’s Q6), and differ from previously reported patterns in functional diversity and richness for terrestrial animals, which emphasize species-rich tropical regions only7, 8. There is a global trend for greater evenness in the number of individuals of each species, across the reef fish species observed at sites (‘community evenness’), at higher latitudes. This contributes to the distribution of functional diversity hotspots and contrasts with well-known latitudinal gradients in richness2, 4. Our findings suggest that the contribution of species diversity to a range of ecosystem functions varies over large scales, and imply that in tropical regions, which have higher numbers of species, each species contributes proportionally less to community-level ecological processes on average than species in temperate regions. Metrics of ecological function usefully complement metrics of species diversity in conservation management, including when identifying planning priorities and when tracking changes to biodiversity values
    corecore