24 research outputs found

    Global Acetylomics of Campylobacter jejuni Shows Lysine Acetylation Regulates CadF Adhesin Processing and Human Fibronectin Binding

    No full text
    Lysine acetylation (KAc) is a reversible post-translational modification (PTM) that can alter protein structure and function; however, specific roles for KAc are largely undefined in bacteria. Acetyl-lysine immunoprecipitation and LC–MS/MS identified 5567 acetylated lysines on 1026 proteins from the gastrointestinal pathogen Campylobacter jejuni (∼63% of the predicted proteome). KAc was identified on proteins from all subcellular locations, including the outer membrane (OM) and extracellular proteins. Label-based LC–MS/MS identified proteins and KAc sites during growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts). 3410 acetylated peptides were quantified, and 784 (from 409 proteins) were differentially abundant in DOC growth. Changes in KAc involved multiple pathways, suggesting a dynamic role for this PTM in bile resistance. As observed elsewhere, we show KAc is primarily nonenzymatically mediated via acetyl-phosphate; however, the deacetylase CobB also contributes to a global elevation of this modification in DOC. We observed several multiply acetylated OM proteins and altered DOC abundance of acetylated peptides in the fibronectin (Fn)-binding adhesin CadF. We show KAc reduces CadF Fn binding and prevalence of lower mass variants. This study provides the first system-wide lysine acetylome of C. jejuni and contributes to our understanding of KAc as an emerging PTM in bacteria

    Global Acetylomics of Campylobacter jejuni Shows Lysine Acetylation Regulates CadF Adhesin Processing and Human Fibronectin Binding

    No full text
    Lysine acetylation (KAc) is a reversible post-translational modification (PTM) that can alter protein structure and function; however, specific roles for KAc are largely undefined in bacteria. Acetyl-lysine immunoprecipitation and LC–MS/MS identified 5567 acetylated lysines on 1026 proteins from the gastrointestinal pathogen Campylobacter jejuni (∼63% of the predicted proteome). KAc was identified on proteins from all subcellular locations, including the outer membrane (OM) and extracellular proteins. Label-based LC–MS/MS identified proteins and KAc sites during growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts). 3410 acetylated peptides were quantified, and 784 (from 409 proteins) were differentially abundant in DOC growth. Changes in KAc involved multiple pathways, suggesting a dynamic role for this PTM in bile resistance. As observed elsewhere, we show KAc is primarily nonenzymatically mediated via acetyl-phosphate; however, the deacetylase CobB also contributes to a global elevation of this modification in DOC. We observed several multiply acetylated OM proteins and altered DOC abundance of acetylated peptides in the fibronectin (Fn)-binding adhesin CadF. We show KAc reduces CadF Fn binding and prevalence of lower mass variants. This study provides the first system-wide lysine acetylome of C. jejuni and contributes to our understanding of KAc as an emerging PTM in bacteria

    Global Acetylomics of Campylobacter jejuni Shows Lysine Acetylation Regulates CadF Adhesin Processing and Human Fibronectin Binding

    No full text
    Lysine acetylation (KAc) is a reversible post-translational modification (PTM) that can alter protein structure and function; however, specific roles for KAc are largely undefined in bacteria. Acetyl-lysine immunoprecipitation and LC–MS/MS identified 5567 acetylated lysines on 1026 proteins from the gastrointestinal pathogen Campylobacter jejuni (∼63% of the predicted proteome). KAc was identified on proteins from all subcellular locations, including the outer membrane (OM) and extracellular proteins. Label-based LC–MS/MS identified proteins and KAc sites during growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts). 3410 acetylated peptides were quantified, and 784 (from 409 proteins) were differentially abundant in DOC growth. Changes in KAc involved multiple pathways, suggesting a dynamic role for this PTM in bile resistance. As observed elsewhere, we show KAc is primarily nonenzymatically mediated via acetyl-phosphate; however, the deacetylase CobB also contributes to a global elevation of this modification in DOC. We observed several multiply acetylated OM proteins and altered DOC abundance of acetylated peptides in the fibronectin (Fn)-binding adhesin CadF. We show KAc reduces CadF Fn binding and prevalence of lower mass variants. This study provides the first system-wide lysine acetylome of C. jejuni and contributes to our understanding of KAc as an emerging PTM in bacteria

    Global Acetylomics of Campylobacter jejuni Shows Lysine Acetylation Regulates CadF Adhesin Processing and Human Fibronectin Binding

    No full text
    Lysine acetylation (KAc) is a reversible post-translational modification (PTM) that can alter protein structure and function; however, specific roles for KAc are largely undefined in bacteria. Acetyl-lysine immunoprecipitation and LC–MS/MS identified 5567 acetylated lysines on 1026 proteins from the gastrointestinal pathogen Campylobacter jejuni (∼63% of the predicted proteome). KAc was identified on proteins from all subcellular locations, including the outer membrane (OM) and extracellular proteins. Label-based LC–MS/MS identified proteins and KAc sites during growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts). 3410 acetylated peptides were quantified, and 784 (from 409 proteins) were differentially abundant in DOC growth. Changes in KAc involved multiple pathways, suggesting a dynamic role for this PTM in bile resistance. As observed elsewhere, we show KAc is primarily nonenzymatically mediated via acetyl-phosphate; however, the deacetylase CobB also contributes to a global elevation of this modification in DOC. We observed several multiply acetylated OM proteins and altered DOC abundance of acetylated peptides in the fibronectin (Fn)-binding adhesin CadF. We show KAc reduces CadF Fn binding and prevalence of lower mass variants. This study provides the first system-wide lysine acetylome of C. jejuni and contributes to our understanding of KAc as an emerging PTM in bacteria

    Secretome of Transmissible <i>Pseudomonas aeruginosa</i> AES-1R Grown in a Cystic Fibrosis Lung-Like Environment

    No full text
    <i>Pseudomonas aeruginosa</i> is the predominant cause of mortality in patients with cystic fibrosis (CF). We examined the secretome of an acute, transmissible CF <i>P. aeruginosa</i> (Australian epidemic strain 1-R; AES-1R) compared with laboratory-adapted PAO1. Culture supernatant proteins from rich (LB) and minimal (M9) media were compared using 2-DE and 2DLC-MS/MS, which revealed elevated abundance of PasP protease and absence of AprA protease in AES-1R. CF lung-like artificial sputum medium (ASMDM) contains serum and mucin that generally preclude proteomics of secreted proteins. ASMDM culture supernatants were subjected to 2DLC-MS/MS, which allowed the identification of 57 <i>P. aeruginosa</i> proteins, and qualitative spectral counting was used to estimate relative abundance. AES-1R-specific AES_7139 and PasP were more abundant in AES-1R ASMDM culture supernatants, while AprA could only be identified in PAO1. Relative quantitation was performed using selected reaction monitoring. Significantly elevated levels of PasP, LasB, chitin-binding protein (CbpD), and PA4495 were identified in AES-1R ASMDM supernatants. Quantitative PCR showed elevated <i>pasP</i> in AES-1R during early (18 h) ASMDM growth, while no evidence of <i>aprA</i> expression could be observed. Genomic screening of CF isolates revealed <i>aes_7139</i> was present in all AES-1 and one pair of sequential nonepidemic isolates. Secreted proteins may be crucial in aiding CF-associated <i>P. aeruginosa</i> to establish infection and for adaptation to the CF lung

    Secretome of Transmissible <i>Pseudomonas aeruginosa</i> AES-1R Grown in a Cystic Fibrosis Lung-Like Environment

    No full text
    <i>Pseudomonas aeruginosa</i> is the predominant cause of mortality in patients with cystic fibrosis (CF). We examined the secretome of an acute, transmissible CF <i>P. aeruginosa</i> (Australian epidemic strain 1-R; AES-1R) compared with laboratory-adapted PAO1. Culture supernatant proteins from rich (LB) and minimal (M9) media were compared using 2-DE and 2DLC-MS/MS, which revealed elevated abundance of PasP protease and absence of AprA protease in AES-1R. CF lung-like artificial sputum medium (ASMDM) contains serum and mucin that generally preclude proteomics of secreted proteins. ASMDM culture supernatants were subjected to 2DLC-MS/MS, which allowed the identification of 57 <i>P. aeruginosa</i> proteins, and qualitative spectral counting was used to estimate relative abundance. AES-1R-specific AES_7139 and PasP were more abundant in AES-1R ASMDM culture supernatants, while AprA could only be identified in PAO1. Relative quantitation was performed using selected reaction monitoring. Significantly elevated levels of PasP, LasB, chitin-binding protein (CbpD), and PA4495 were identified in AES-1R ASMDM supernatants. Quantitative PCR showed elevated <i>pasP</i> in AES-1R during early (18 h) ASMDM growth, while no evidence of <i>aprA</i> expression could be observed. Genomic screening of CF isolates revealed <i>aes_7139</i> was present in all AES-1 and one pair of sequential nonepidemic isolates. Secreted proteins may be crucial in aiding CF-associated <i>P. aeruginosa</i> to establish infection and for adaptation to the CF lung

    <i>Staphylococcus aureus</i> Surface Proteins Involved in Adaptation to Oxacillin Identified Using a Novel Cell Shaving Approach

    No full text
    Staphylococcus aureus is a Gram-positive pathogen responsible for a variety of infections, and some strains are resistant to virtually all classes of antibiotics. Cell shaving proteomics using a novel probability scoring algorithm to compare the surfaceomes of the methicillin-resistant, laboratory-adapted S. aureus COL strain with a COL strain in vitro adapted to high levels of oxacillin (APT). APT displayed altered cell morphology compared with COL and increased aggregation in biofilm assays. Increased resistance to β-lactam antibiotics was observed, but adaptation to oxacillin did not confer multidrug resistance. Analysis of the S. aureus COL and APT surfaceomes identified 150 proteins at a threshold determined by the scoring algorithm. Proteins unique to APT included the LytR-CpsA-Psr (LCP) domain-containing MsrR and SACOL2302. Quantitative RT-PCR showed increased expression of <i>sacol2302</i> in APT grown with oxacillin (>6-fold compared with COL). Overexpression of <i>sacol2302</i> in COL to levels consistent with APT (+ oxacillin) did not influence biofilm formation or β-lactam resistance. Proteomics using iTRAQ and LC–MS/MS identified 1323 proteins (∼50% of the theoretical S. aureus proteome), and cluster analysis demonstrated elevated APT abundances of LCP proteins, capsule and peptidoglycan biosynthesis proteins, and proteins involved in wall remodelling. Adaptation to oxacillin also induced urease proteins, which maintained culture pH compared to COL. These results show that S. aureus modifies surface architecture in response to antibiotic adaptation

    Large-Scale Capture of Peptides Containing Reversibly Oxidized Cysteines by Thiol-Disulfide Exchange Applied to the Myocardial Redox Proteome

    No full text
    Redox regulation is emerging as an important post-translational modification in cell signaling and pathogenesis. Cysteine (Cys) is the most redox active of the commonly coded amino acids and is thus an important target for redox-based modifications. Reactions that oxidize the Cys sulfur atom to low oxidation states (e.g., disulfide) are reversible, while further reactions to higher oxidation states (e.g., sulfonic acid) may be irreversible under biological conditions. Reversible modifications are particularly interesting as they mediate redox signaling and regulation of proteins under physiological conditions and during adaptation to oxidant stress. An enrichment method that relied on rapid and specific alkylation of free Cys, followed by thiol-based reduction and resin capture by thiol-disulfide exchange chemistry was applied to isolate reversibly modified Cys-containing peptides. Chromatographic conditions were optimized to provide increased specificity by removal of noncovalent interactions. The technique was highly efficient, based on near equimolar reactions with the resin, reproducible and linear for peptide elution, as quantified by label-free mass spectrometry. The method was applied to a complex protein lysate generated from rat myocardial tissue and 6559 unique Cys-containing peptides from 2694 proteins were identified. Comparison with the rat database and previous studies showed effective enrichment of proteins modified by S-nitrosylation, disulfide formation, and Cys-sulfenic acid. Analysis of amino acid sequence features indicated a preference for acidic residues and increased hydrophilicity in the regions immediately up- or downstream of the reactive Cys. This technique is ideally suited for the enrichment and profiling of reversible Cys modifications on a proteome-wide scale

    <i>Staphylococcus aureus</i> Surface Proteins Involved in Adaptation to Oxacillin Identified Using a Novel Cell Shaving Approach

    No full text
    Staphylococcus aureus is a Gram-positive pathogen responsible for a variety of infections, and some strains are resistant to virtually all classes of antibiotics. Cell shaving proteomics using a novel probability scoring algorithm to compare the surfaceomes of the methicillin-resistant, laboratory-adapted S. aureus COL strain with a COL strain in vitro adapted to high levels of oxacillin (APT). APT displayed altered cell morphology compared with COL and increased aggregation in biofilm assays. Increased resistance to β-lactam antibiotics was observed, but adaptation to oxacillin did not confer multidrug resistance. Analysis of the S. aureus COL and APT surfaceomes identified 150 proteins at a threshold determined by the scoring algorithm. Proteins unique to APT included the LytR-CpsA-Psr (LCP) domain-containing MsrR and SACOL2302. Quantitative RT-PCR showed increased expression of <i>sacol2302</i> in APT grown with oxacillin (>6-fold compared with COL). Overexpression of <i>sacol2302</i> in COL to levels consistent with APT (+ oxacillin) did not influence biofilm formation or β-lactam resistance. Proteomics using iTRAQ and LC–MS/MS identified 1323 proteins (∼50% of the theoretical S. aureus proteome), and cluster analysis demonstrated elevated APT abundances of LCP proteins, capsule and peptidoglycan biosynthesis proteins, and proteins involved in wall remodelling. Adaptation to oxacillin also induced urease proteins, which maintained culture pH compared to COL. These results show that S. aureus modifies surface architecture in response to antibiotic adaptation

    Large-Scale Capture of Peptides Containing Reversibly Oxidized Cysteines by Thiol-Disulfide Exchange Applied to the Myocardial Redox Proteome

    No full text
    Redox regulation is emerging as an important post-translational modification in cell signaling and pathogenesis. Cysteine (Cys) is the most redox active of the commonly coded amino acids and is thus an important target for redox-based modifications. Reactions that oxidize the Cys sulfur atom to low oxidation states (e.g., disulfide) are reversible, while further reactions to higher oxidation states (e.g., sulfonic acid) may be irreversible under biological conditions. Reversible modifications are particularly interesting as they mediate redox signaling and regulation of proteins under physiological conditions and during adaptation to oxidant stress. An enrichment method that relied on rapid and specific alkylation of free Cys, followed by thiol-based reduction and resin capture by thiol-disulfide exchange chemistry was applied to isolate reversibly modified Cys-containing peptides. Chromatographic conditions were optimized to provide increased specificity by removal of noncovalent interactions. The technique was highly efficient, based on near equimolar reactions with the resin, reproducible and linear for peptide elution, as quantified by label-free mass spectrometry. The method was applied to a complex protein lysate generated from rat myocardial tissue and 6559 unique Cys-containing peptides from 2694 proteins were identified. Comparison with the rat database and previous studies showed effective enrichment of proteins modified by S-nitrosylation, disulfide formation, and Cys-sulfenic acid. Analysis of amino acid sequence features indicated a preference for acidic residues and increased hydrophilicity in the regions immediately up- or downstream of the reactive Cys. This technique is ideally suited for the enrichment and profiling of reversible Cys modifications on a proteome-wide scale
    corecore